cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A114213 A generalized Pascal triangle modulo 2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1
Offset: 0

Views

Author

Paul Barry, Nov 17 2005

Keywords

Comments

Row sums are A114212. Diagonal sums are A114214.
Row sums of inverse are 0^n (conjecture).

Examples

			Triangle begins
  1;
  1, 1;
  1, 1, 1;
  1, 1, 1, 1;
  1, 1, 0, 1, 1;
  1, 1, 0, 0, 1, 1;
  1, 1, 1, 0, 1, 1, 1;
  1, 1, 1, 1, 1, 1, 1, 1;
  1, 1, 0, 1, 0, 1, 0, 1, 1;
  1, 1, 0, 0, 0, 0, 0, 0, 1, 1;
  1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1;
		

Crossrefs

Programs

  • PARI
    T(n,k) = sum(j=0, n-k, binomial(k, j)*binomial(n-k, j)*(1+(-1)^j)/2) % 2; \\ Michel Marcus, Jun 06 2021

Formula

T(n, k) = (Sum_{j=0..n-k} C(k, j)*C(n-k, j)*(1+(-1)^j)/2) mod 2.
Showing 1-1 of 1 results.