cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114244 a(n) = (n+1)*(n+2)^2*(n+3)*(7n^2 + 28n + 30)/360.

Original entry on oeis.org

1, 13, 76, 295, 889, 2254, 5040, 10242, 19305, 34243, 57772, 93457, 145873, 220780, 325312, 468180, 659889, 912969, 1242220, 1664971, 2201353, 2874586, 3711280, 4741750, 6000345, 7525791, 9361548, 11556181, 14163745, 17244184, 20863744, 25095400, 30019297
Offset: 0

Views

Author

Emeric Deutsch, Nov 18 2005

Keywords

Comments

Kekulé numbers for certain benzenoids.
First differences of A114242. - Peter Bala, Sep 21 2007

References

  • S. J. Cyvin and I. Gutman, KekulĂ© structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (pp. 167-169, Table 10.5/II/5).

Crossrefs

Cf. A114242.

Programs

  • Maple
    a:=n->(n+1)*(n+2)^2*(n+3)*(7*n^2+28*n+30)/360: seq(a(n),n=0..35);
  • Mathematica
    Table[(n + 1)*(n + 2)^2*(n + 3)*(7*n^2 + 28*n + 30)/360, {n, 0, 30}] (* Amiram Eldar, May 31 2022 *)
    CoefficientList[Series[(1+x)(1+5x+x^2)/(1-x)^7,{x,0,40}],x] (* or *) LinearRecurrence[ {7,-21,35,-35,21,-7,1},{1,13,76,295,889,2254,5040},40] (* Harvey P. Dale, Mar 06 2023 *)

Formula

G.f.: (1+x)(1 + 5x + x^2)/(1-x)^7.
From Amiram Eldar, May 31 2022: (Start)
Sum_{n>=0} 1/a(n) = 5*Pi*(7*sqrt(14)*coth(sqrt(2/7)*Pi) - 6*Pi) - 1295/9.
Sum_{n>=0} (-1)^n/a(n) = 5*Pi*(7*sqrt(14)*cosech(sqrt(2/7)*Pi) + 3*Pi) - 2755/9. (End)