A114244 a(n) = (n+1)*(n+2)^2*(n+3)*(7n^2 + 28n + 30)/360.
1, 13, 76, 295, 889, 2254, 5040, 10242, 19305, 34243, 57772, 93457, 145873, 220780, 325312, 468180, 659889, 912969, 1242220, 1664971, 2201353, 2874586, 3711280, 4741750, 6000345, 7525791, 9361548, 11556181, 14163745, 17244184, 20863744, 25095400, 30019297
Offset: 0
References
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (pp. 167-169, Table 10.5/II/5).
Links
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Crossrefs
Cf. A114242.
Programs
-
Maple
a:=n->(n+1)*(n+2)^2*(n+3)*(7*n^2+28*n+30)/360: seq(a(n),n=0..35);
-
Mathematica
Table[(n + 1)*(n + 2)^2*(n + 3)*(7*n^2 + 28*n + 30)/360, {n, 0, 30}] (* Amiram Eldar, May 31 2022 *) CoefficientList[Series[(1+x)(1+5x+x^2)/(1-x)^7,{x,0,40}],x] (* or *) LinearRecurrence[ {7,-21,35,-35,21,-7,1},{1,13,76,295,889,2254,5040},40] (* Harvey P. Dale, Mar 06 2023 *)
Formula
G.f.: (1+x)(1 + 5x + x^2)/(1-x)^7.
From Amiram Eldar, May 31 2022: (Start)
Sum_{n>=0} 1/a(n) = 5*Pi*(7*sqrt(14)*coth(sqrt(2/7)*Pi) - 6*Pi) - 1295/9.
Sum_{n>=0} (-1)^n/a(n) = 5*Pi*(7*sqrt(14)*cosech(sqrt(2/7)*Pi) + 3*Pi) - 2755/9. (End)
Comments