cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114313 Difference between first odd semiprime >= 5^n and 5^n.

Original entry on oeis.org

8, 4, 0, 4, 4, 2, 2, 2, 4, 4, 2, 2, 4, 14, 4, 2, 18, 6, 2, 12, 16, 2, 4, 2, 42, 6, 4, 2, 22, 26, 12, 18, 18, 38, 12, 14, 2, 6, 36, 2, 16, 24, 6, 14, 12, 6, 28, 24, 24, 8, 16, 32, 16, 28, 12, 8, 16, 6, 16, 98
Offset: 0

Views

Author

Jonathan Vos Post, Feb 05 2006

Keywords

Comments

A098147 is difference between first odd semiprime > 10^n and 10^n.

Examples

			a(0) = 8 because 5^0 + 8 = 9 = 3^2 is an odd semiprime; note that because 5^0 + 3 = 4 = 2^2 is an even semiprime, but we only care about odd semiprimes here.
a(1) = 4 because 5^1 + 4 = 9 = 3^2 is an odd semiprime.
a(2) = 0 because 5^2 + 0 = 25 = 5^2 is an odd semiprime; there are no more zero values.
a(3) = 4 because 5^3 + 4 = 129 = 3 * 43.
a(4) = 4 because 5^4 + 4 = 629 = 17 * 37.
a(5) = 2 because 5^5 + 2 = 3127 = 53 * 59.
a(6) = 2 because 5^6 + 2 = 15627 = 3 * 5209.
a(7) = 2 because 5^7 + 2 = 78127 = 7 * 11161.
a(8) = 4 because 5^8 + 4 = 390629 = 577 * 677 (brilliant).
a(9) = 4 because 5^9 + 4 = 1953129 = 3 * 651043.
		

Crossrefs

Programs

  • Mathematica
    dfpsn[n_]:=Module[{n5=5^n,s},s=If[OddQ[n5],n5,n5+1];While[PrimeOmega[s] != 2,s=s+2];s-n5]; Array[dfpsn,60,0] (* Harvey P. Dale, Sep 04 2013 *)

Formula

a(n) = minimum integer k such that 5^n + k is an element of A046315. a(n) = minimum integer k such that A000351(n) + k is an element of A046315.

Extensions

Corrected and extended by Harvey P. Dale, Sep 04 2013