cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A227644 Perfect powers equal to the sum of 2 factorial numbers.

Original entry on oeis.org

4, 8, 25, 121, 144, 5041
Offset: 1

Views

Author

Giovanni Resta, Jul 19 2013

Keywords

Comments

a(7), if it exists, is greater than 10^100.
a(7), if it exists, is greater than 10000!. - Filip Zaludek, Jul 18 2017
a(7), if it exists, is greater than 11750!. - Filip Zaludek, Sep 07 2018
a(7), if it exists, is greater than 20000!. - Filip Zaludek, Nov 04 2020

Examples

			5041 = 71^2 = 1! + 7!.
		

Crossrefs

Programs

  • C
    /* To compile: gcc -Wall -O2 A227644.c -o A227644 -lgmp */
    #include 
    #include 
    #include 
    int main()
    {
       int bsz=256, a=0;
       mpz_t *f, t;
       f = malloc(sizeof(mpz_t) * bsz);
       mpz_init(t); mpz_init(f[0]); mpz_set_ui(f[0], 1);
       while (1)
       {
           a += 1;
           if (a == bsz)
           {
               bsz *= 2;
               f = (mpz_t *) realloc(f, sizeof(mpz_t) * bsz);
           }
           mpz_init(f[a]);
           mpz_mul_ui(f[a], f[a-1], a);
           for (int i=1; i<=a; i++)
           {
               mpz_add(t, f[a], f[i]);
               if (mpz_perfect_power_p(t))
               {
                   gmp_printf("%Zd, ", t);
                   fflush(stdout);
               }
           }
       }
       return 0;
    }

A227651 Perfect powers equal to the sum of 10 factorial numbers.

Original entry on oeis.org

16, 25, 27, 32, 36, 49, 64, 81, 100, 125, 128, 144, 169, 196, 216, 225, 256, 289, 324, 343, 400, 441, 484, 512, 529, 625, 676, 729, 784, 841, 900, 1000, 1024, 1089, 1156, 1225, 1331, 1444, 1521, 1600, 1681, 1728, 1936, 2048, 2187, 2197, 2304, 2401, 2916, 3025
Offset: 1

Views

Author

Giovanni Resta, Jul 19 2013

Keywords

Comments

a(240), if it exists, is larger than 10^50.

Examples

			25411681 = 71^4 = 1! + 7! + 7! + 10! + 10! + 10! + 10! + 10! + 10! + 10!.
		

Crossrefs

A082875 Squares that are the sum of three factorials.

Original entry on oeis.org

4, 9, 36, 49, 841, 5184
Offset: 1

Views

Author

Cino Hilliard, May 25 2003

Keywords

Examples

			These appear to be the only solutions. 8 and 27 appear to be the only cubes that are the sum of 3 factorials. Again, it appears that 2 and 3 are the only powers of n satisfying a1!+a2!+a3! = z^n.
The complete list of solutions is
a1 a2 a3 z^2
0 0 2 4
0 1 2 4
0 2 3 9
0 4 4 49
0 5 6 841
1 1 2 4
1 2 3 9
1 4 4 49
1 5 6 841
3 3 4 36
4 5 7 5184
		

Crossrefs

Programs

  • Mathematica
    d = 50; a = Union[ Flatten[ Table[a! + b! + c!, {a, 1, d}, {b, a, d}, {c, b, d}]]]; l = Length[a]; Do[ If[ IntegerQ[ Sqrt[ a[[i]]]], Print[ a[[i]]]], {i, 1, l}]
  • PARI
    sum3factsq(n) = { for(a1=1,n, for(a2=a1,n, for(a3=a2,n, z = a1!+a2!+a3!; if(issquare(z),print1(z" ")) ) ) ) }

Formula

a1! + a2! + a3! = z^2.

Extensions

Sequence data ordered by Michel Marcus, Jun 03 2013

A227650 Perfect powers equal to the sum of 9 factorial numbers.

Original entry on oeis.org

9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, 144, 169, 196, 216, 225, 243, 256, 289, 324, 400, 441, 512, 729, 784, 900, 961, 1000, 1024, 1089, 1156, 1296, 1369, 1444, 1521, 1600, 1681, 1728, 1764, 2048, 2187, 2197, 2209, 2304, 2916, 3125, 3844, 4356
Offset: 1

Views

Author

Giovanni Resta, Jul 19 2013

Keywords

Comments

a(178), if it exists, is larger than 10^100.

Examples

			1815848 = 122^3 = 2! + 3! + 6! + 6! + 9! + 9! + 9! + 9! + 9!.
		

Crossrefs

A227645 Perfect powers equal to the sum of 4 factorial numbers.

Original entry on oeis.org

4, 8, 9, 16, 27, 32, 125, 128, 169, 243, 361, 729, 961, 1444, 10201, 403225, 725904
Offset: 1

Views

Author

Giovanni Resta, Jul 19 2013

Keywords

Comments

a(18), if it exists, is larger than 10^100.

Examples

			729 = 3^6 = 1! + 2! + 3! + 6!.
		

Crossrefs

A227646 Perfect powers equal to the sum of 5 factorial numbers.

Original entry on oeis.org

8, 9, 16, 25, 32, 36, 125, 128, 144, 216, 243, 289, 729, 1444, 1681, 2304, 3600, 5832, 45369, 121104, 363609, 7257636, 11289600, 6234681600
Offset: 1

Views

Author

Giovanni Resta, Jul 19 2013

Keywords

Comments

a(25), if it exists, is larger than 10^100.

Examples

			5832 = 18^3 = 4! + 4! + 4! + 6! + 7!.
		

Crossrefs

A227647 Perfect powers equal to the sum of 6 factorial numbers.

Original entry on oeis.org

8, 9, 16, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, 144, 196, 256, 484, 729, 900, 1444, 1728, 2187, 2209, 2401, 5184, 5329, 5776, 5929, 7225, 7921, 11664, 15129, 20164, 41209, 45369, 46225, 80656, 121801, 126025, 201601, 363609, 443556, 776161, 806404
Offset: 1

Views

Author

Giovanni Resta, Jul 19 2013

Keywords

Comments

a(51), if it exists, is larger than 10^100.

Examples

			443556 = 666^2 = 3! + 3! + 4! + 8! + 8! + 9!.
		

Crossrefs

A227648 Perfect powers equal to the sum of 7 factorial numbers.

Original entry on oeis.org

8, 9, 16, 25, 27, 32, 36, 64, 81, 100, 128, 144, 169, 196, 256, 324, 484, 512, 529, 625, 729, 784, 841, 1089, 1225, 2187, 2197, 2916, 3025, 3721, 5184, 5776, 6241, 6724, 10816, 15129, 15876, 20164, 25921, 40401, 40804, 42025, 45369, 47524, 51984, 57600, 80656
Offset: 1

Views

Author

Giovanni Resta, Jul 19 2013

Keywords

Comments

a(80), if it exists, is larger than 10^100.

Examples

			83521 = 17^4 = 1! + 6! + 6! + 6! + 6! + 8! + 8!.
		

Crossrefs

A227649 Perfect powers equal to the sum of 8 factorial numbers.

Original entry on oeis.org

8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 125, 128, 144, 169, 196, 216, 225, 243, 256, 289, 343, 361, 400, 484, 512, 576, 729, 784, 841, 900, 961, 1000, 1089, 1521, 1600, 1849, 2304, 5041, 5184, 5776, 5832, 6724, 10201, 10816, 11881, 14400, 15129, 17424
Offset: 1

Views

Author

Giovanni Resta, Jul 19 2013

Keywords

Comments

a(101), if it exists, is larger than 10^100.

Examples

			10890000 = 3300^2 = 6! + 6! + 6! + 6! + 6! + 10! + 10! + 10!.
		

Crossrefs

Showing 1-9 of 9 results.