cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A114377 Perfect powers equal to the sum of three factorial numbers.

Original entry on oeis.org

4, 8, 9, 27, 32, 36, 49, 128, 841, 5184
Offset: 1

Views

Author

Giovanni Teofilatto, Feb 10 2006

Keywords

Comments

a(11), if it exists, is larger than 10^100.
a(11), if it exists, is larger than 1024!. - Filip Zaludek, Sep 08 2018

Examples

			a(1) = 4 because 4 = 1! + 1! + 2!;
a(2) = 8 because 8 = 1! + 1! + 3!;
a(3) = 9 because 9 = 1! + 2! + 3!.
		

Crossrefs

Extensions

Offset corrected by Arkadiusz Wesolowski, Mar 06 2013
Example corrected by and a(9)-a(10) from Giovanni Resta, Jul 19 2013

A082920 Squares that are the sum of four factorials.

Original entry on oeis.org

4, 9, 16, 169, 361, 729, 961, 1444, 10201, 403225, 725904
Offset: 1

Views

Author

Cino Hilliard, May 25 2003

Keywords

Examples

			These appear to be the only solutions to a! + b! + c! + d! = n^2:
a b c d n
0 0 0 0 4
0 0 0 1 4
0 0 0 3 9
0 0 1 1 4
0 0 1 3 9
0 1 1 1 4
0 1 1 3 9
0 2 3 6 729
0 4 4 5 169
0 4 8 9 403225
0 5 5 5 361
0 5 5 6 961
0 5 7 7 10201
1 1 1 1 4
1 1 1 3 9
1 2 3 6 729
1 4 4 5 169
1 4 8 9 403225
1 5 5 5 361
1 5 5 6 961
1 5 7 7 10201
2 2 3 3 16
2 2 6 6 1444
4 5 9 9 725904
1!+2!+3!+6! = 729 = 27^2. This shows that 4 factorials can add to a cube.
		

Crossrefs

Cf. A082875.

Programs

  • Maple
    S:= {}:
    N:= 100: # for terms < (N+1)!
    F:= [seq(i!,i=1..N)]:
    for a from 1 to N do
      for b from a to N do
       for c from b to N do
         for d from c to N do
         if issqr(F[a]+F[b]+F[c]+F[d]) then
           S:= S union {F[a]+F[b]+F[c]+F[d]}
    fi od od od od:
    sort(convert(S,list)); # Robert Israel, Dec 23 2024
  • Mathematica
    e = 75; a = Union[ Flatten[ Table[a! + b! + c! + d!, {a, 1, e}, {b, a, e}, {c, b, e}, {d, c, e}]]]; l = Length[a]; Do[ If[ IntegerQ[ Sqrt[ a[[i]] ]], Print[ a[[i]] ]], {i, 1, l}]
    Select[Union[Total/@Tuples[Range[10]!,4]],IntegerQ[Sqrt[#]]&] (* Harvey P. Dale, Aug 23 2014 *)
  • PARI
    sum4factsq(n) = { for(a1=0,n, for(a2=a1,n, for(a3=a2,n, for(a4=a3,n, z = a1!+a2!+a3!+a4!; if(issquare(z),print(a1" "a2" "a3" "a4" "z)) ) ) ) ) }

Extensions

Edited, corrected and extended by Robert G. Wilson v, May 26 2003
Offset corrected by Robert Israel, Dec 23 2024

A162681 Numbers k such that k^2 is a sum of three factorials.

Original entry on oeis.org

2, 3, 6, 7, 29, 72
Offset: 1

Views

Author

Keywords

Comments

The next term after 72 is larger than 10^40 (if it exists). - R. J. Mathar, Jul 16 2009

Examples

			2^2 = 1! + 1! + 2!;
3^2 = 1! + 2! + 3!;
6^2 = 3! + 3! + 4!;
7^2 = 1! + 4! + 4!;
29^2 = 1! + 5! + 6!;
72^2 = 4! + 5! + 7!.
		

Crossrefs

Programs

  • Maple
    s := 10^40 ; sqr := s^2 : for a from 1 do if a! > sqr then break; fi; for b from a do if a!+b! > sqr then break; fi; for c from b do if a!+b!+c! > sqr then break; fi; if issqr(a!+b!+c!) then print( sqrt(a!+b!+c!)); fi; od: od: od: # R. J. Mathar, Jul 16 2009
    w := 7: f := proc (x, y, z) options operator, arrow: sqrt(factorial(x)+factorial(y)+factorial(z)) end proc: A := {}: for x to w do for y to w do for z to w do if type(f(x, y, z), integer) = true then A := `union`(A, {f(x, y, z)}) else end if end do end do end do: A; # Emeric Deutsch, Aug 03 2009
  • Mathematica
    $MaxExtraPrecision=Infinity; lst={};Do[Do[Do[x=(a!+b!+c!)^(1/2);If[x==IntegerPart[x], AppendTo[lst,x]],{c,b,2*4!}],{b,a,2*4!}],{a,2*4!}];Union[lst]

Extensions

Definition rephrased by R. J. Mathar, Jul 16 2009
Showing 1-3 of 3 results.