cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114382 Prime(n) + Semiprime(n) + (3-almostPrime)(n).

Original entry on oeis.org

14, 21, 32, 37, 52, 56, 68, 83, 92, 100, 114, 123, 139, 147, 154, 169, 183, 188, 200, 220, 229, 240, 250, 263, 281, 292, 301, 309, 319, 325, 348, 362, 378, 382, 408, 416, 436, 446, 456, 465, 473, 478, 495, 508, 517, 528, 543, 561, 579, 587, 610, 627, 631, 648
Offset: 1

Views

Author

Jonathan Vos Post, Feb 11 2006

Keywords

Examples

			a(1) = Prime(1) + Semiprime(1) + 3AlmostPrime(1) = 2 + 4 + 8 = 14.
a(10) = Prime(10) + Semiprime(10) + 3AlmostPrime(10) = 29 + 26 + 45 = 100.
a(20) = Prime(20) + Semiprime(20) + 3AlmostPrime(20) = 71 + 57 + 92 = 220.
a(30) = Prime(30) + Semiprime(30) + 3AlmostPrime(30) = 113 + 87 + 125 = 325.
a(40) = Prime(40) + Semiprime(40) + 3AlmostPrime(40) = 173 + 121 + 71 = 465.
a(50) = Prime(50) + Semiprime(50) + 3AlmostPrime(50) = 229 + 146 + 212 = 587.
		

Crossrefs

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    AlmostPrime[k_, n_] := Block[{e = Floor[Log[2, n]+k], a, b}, a = 2^e; Do[b = 2^p; While[ AlmostPrimePi[k, a] < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; Table[ Sum[ AlmostPrime[k, n], {k, 3}], {n, 54}] (* Robert G. Wilson v, Feb 21 2006 *)

Formula

a(n) = A000040(n) + A001358(n) + A014612(n).

Extensions

a(7) corrected by Georg Fischer, May 09 2024