cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A114397 Sequence A114396 in binary.

Original entry on oeis.org

1, 11, 111, 1111, 101, 11111, 111111, 10101, 1001, 1111111, 110011, 11111111, 11011011, 1110111, 1010101, 1010011, 10001, 111111111, 1100101, 11100111, 1010111, 1001001, 11010111, 1111111111, 111000111, 1101101111, 111101111
Offset: 1

Views

Author

Antti Karttunen, Feb 07 2006

Keywords

Crossrefs

a(n) = A007088(A114396(n)).

A115873 First column of A115872.

Original entry on oeis.org

1, 1, 3, 1, 7, 3, 7, 1, 15, 7, 3, 3, 5, 7, 15, 1, 31, 15, 7, 7, 31, 3, 7, 3, 31, 5, 31, 7, 31, 15, 31, 1, 63, 31, 15, 15, 7, 7, 7, 7, 63, 31, 3, 3, 63, 7, 15, 3, 21, 31, 63, 5, 63, 31, 7, 7, 9, 31, 63, 15, 21, 31, 63, 1, 127, 63, 31, 31, 15, 15, 15, 15, 127, 7, 31, 7, 15, 7, 15, 7, 51
Offset: 1

Views

Author

Antti Karttunen, Feb 07 2006

Keywords

Crossrefs

Programs

  • Mathematica
    X[a_, b_] := Module[{A, B, C, x},
       A = Reverse@IntegerDigits[a, 2];
       B = Reverse@IntegerDigits[b, 2];
       C = Expand[
          Sum[A[[i]]*x^(i - 1), {i, 1, Length[A]}]*
          Sum[B[[i]]*x^(i - 1), {i, 1, Length[B]}]];
       PolynomialMod[C, 2] /. x -> 2];
    T[n_, k_] := Module[{x = BitXor[n - 1, 2 n - 1], k0 = k},
         For[i = 1, True, i++, If[n*i == X[x, i],
         If[k0 == 1, Return[i], k0--]]]];
    a[n_] := T[n, 1];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jan 04 2022 *)

Formula

a(2^k) = 1, a(2n) = a(n).

A114395 Positions where A115873 takes for the first time a value distinct from any of its earlier values.

Original entry on oeis.org

1, 3, 5, 9, 13, 17, 33, 49, 57, 65, 81, 129, 169, 181, 193, 203, 241, 257, 333, 357, 405, 449, 471, 513, 577, 681, 745, 769, 809, 921, 923, 977, 993, 1025, 1201, 1209, 1281, 1345, 1357, 1401, 1457, 1461, 1465, 1481, 1633, 1659, 1811, 1817, 1899, 1967
Offset: 1

Views

Author

Antti Karttunen, Feb 07 2006

Keywords

Crossrefs

A114396 gives the corresponding values.
Showing 1-3 of 3 results.