A114404 4-almost prime gaps. First differences of A014613.
8, 12, 4, 14, 2, 4, 21, 3, 4, 2, 10, 4, 22, 6, 3, 1, 4, 10, 2, 4, 28, 5, 7, 2, 6, 6, 10, 5, 3, 4, 2, 14, 2, 10, 16, 18, 2, 1, 9, 2, 7, 13, 2, 10, 2, 2, 4, 2, 1, 13, 8, 3, 1, 4, 10, 24, 10, 17, 3, 15, 1, 2, 10, 4, 8, 4, 2, 2, 3, 15, 3, 3, 6, 3, 7, 4, 10, 4, 8, 6, 4, 2, 2, 8, 4, 1, 35, 1, 4, 7, 4, 8, 6
Offset: 1
Examples
a(1) = 8 = 24-16 where 16 is the first 4-almost prime and 24 is the second. a(2) = 12 = 36-24. a(3) = 4 = 40-36. a(4) = 14 = 54-40. a(5) = 2 = 56-54. a(6) = 4 = 60-56. a(7) = 21 = 81-60. a(13) = 22 = 126-104. a(21) = 28 = 184-156.
Links
- T. D. Noe, Table of n, a(n) for n=1..10000
Programs
-
Maple
A114404 := proc(nmax) local a,i,a014613 ; a := [] ; i := 1 ; a014613 := -1 ; while nops(a) < nmax do if numtheory[bigomega](i) = 4 then if a014613 > 0 then a := [op(a),i-a014613] ; fi ; a014613 := i ; fi ; i := i+1 ; end: a ; end: A114404(200) ; # R. J. Mathar, May 10 2007
-
Mathematica
Differences[Select[Range[800],Total[FactorInteger[#][[All,2]]]==4&]] (* Harvey P. Dale, Feb 14 2017 *) Select[Range[1000],PrimeOmega[#]==4&]//Differences (* Harvey P. Dale, May 12 2018 *)
Extensions
Corrected and extended by R. J. Mathar, May 10 2007