cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114422 Riordan array (1/sqrt(1-2*x-3*x^2), M(x)-1) where M(x) is the g.f. of the Motzkin numbers A001006.

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 7, 9, 5, 1, 19, 26, 19, 7, 1, 51, 75, 65, 33, 9, 1, 141, 216, 211, 132, 51, 11, 1, 393, 623, 665, 483, 235, 73, 13, 1, 1107, 1800, 2058, 1674, 963, 382, 99, 15, 1, 3139, 5211, 6294, 5598, 3663, 1739, 581, 129, 17, 1, 8953, 15115, 19095, 18261, 13243
Offset: 0

Views

Author

Paul Barry, Feb 12 2006

Keywords

Comments

First column is central trinomial numbers A002426.
Second column is A005774.
Third column is A025568.
Row sums are A116387.
Diagonal sums are A116388.
Product of A007318 and A116382.
Column k has e.g.f. exp(x)*Sum_{j=0..k} C(k,j)*Bessel_I(k+j,2*x).

Examples

			Triangle begins
1,
1, 1,
3, 3, 1,
7, 9, 5, 1,
19, 26, 19, 7, 1,
51, 75, 65, 33, 9, 1,
141, 216, 211, 132, 51, 11, 1
		

Programs

  • GAP
    T:=Flat(List([0..10], n->List([0..n], k->Sum([0..n], j-> Binomial(n, j-k)*Binomial(j, n-j))))); # G. C. Greubel, Dec 15 2018
  • Magma
    [[(&+[Binomial(n, j-k)*Binomial(j, n-j): j in [0..n]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Dec 15 2018
    
  • Mathematica
    T[n_, k_] := Sum[Binomial[n, j - k]*Binomial[j, n - j], {j,0,n}]; Table[T[n, k], {n,0,10}, {k,0,n}] // Flatten (* G. C. Greubel, Feb 28 2017 *)
  • PARI
    {T(n,k) = sum(j=0,n, binomial(n, j-k)*binomial(j, n-j))};
    for(n=0, 10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Dec 15 2018
    
  • Sage
    [[sum(binomial(n, j-k)*binomial(j, n-j) for j in range(n+1)) for k in range(n+1)] for n in range(10)] # G. C. Greubel, Dec 15 2018
    

Formula

Riordan array (1/sqrt(1-2*x-3*x^2), (1-x-2*x^2-sqrt(1-2*x-3*x^2) ) / (2*x^2)).
Number triangle T(n,k) = Sum_{j=0..n} C(n,j-k)*C(j,n-j).