A114423 Multifactorial array read by ascending antidiagonals.
1, 1, 1, 2, 1, 1, 6, 2, 1, 1, 24, 3, 2, 1, 1, 120, 8, 3, 2, 1, 1, 720, 15, 4, 3, 2, 1, 1, 5040, 48, 10, 4, 3, 2, 1, 1, 40320, 105, 18, 5, 4, 3, 2, 1, 1, 362880, 384, 28, 12, 5, 4, 3, 2, 1, 1, 3628800, 945, 80, 21, 6, 5, 4, 3, 2, 1, 1, 39916800, 3840, 162, 32, 14, 6, 5, 4, 3, 2, 1, 1
Offset: 0
Examples
Table M begins: n / M(n,k) 0 | 1 1 1 1 1 1 | 1 1 1 1 1 2 | 2 2 2 2 2 3 | 6 3 3 3 3 4 | 24 8 4 4 4 5 | 120 15 10 5 5 6 | 720 48 18 12 6
Links
- Eric Weisstein's World of Mathematics, Multifactorial.
Crossrefs
Programs
-
Mathematica
NFactorialM[n_, m_] := Block[{k = n, p = Max[1, n]}, While[k > m, k -= m; p *= k]; p]; Table[NFactorialM[n - m + 1, m], {n, 1, 11}, {m, 1, n}] // Flatten (* Jean-François Alcover, Aug 01 2021, after Robert G. Wilson v in A007662 *)
Formula
M(n,k) = n!k.
M(n,k) = A129116(k,n). - Georg Fischer, Nov 02 2021
Extensions
Edited by Alois P. Heinz, Apr 24 2025
Comments