cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114435 Indices of 4-almost prime triangular numbers.

Original entry on oeis.org

8, 16, 20, 23, 26, 36, 40, 45, 49, 50, 51, 53, 59, 60, 62, 65, 68, 69, 74, 76, 77, 83, 88, 89, 91, 92, 100, 103, 105, 110, 114, 115, 117, 123, 126, 129, 131, 136, 139, 146, 149, 150, 151, 154, 156, 165, 169, 182, 185, 186, 187, 194, 196, 197, 198, 206, 210
Offset: 1

Views

Author

Jonathan Vos Post, Feb 13 2006

Keywords

Examples

			a(1) = 8 because T(8) = TriangularNumber(8) = 8*(8+1)/2 = 36 = 2^2 * 3^2 is a 4-almost prime.
a(2) = 16 because T(16) = 16*(16+1)/2 = 136 = 2^3 * 17 is a 4-almost prime.
a(3) = 20 because T(20) = 20*(20+1)/2 = 210 = 2 * 3 * 5 * 7 (210 = primorial 4#).
a(4) = 23 because T(23) = 23*(23+1)/2 = 276 = 2^2 * 3 * 23.
a(5) = 26 because T(26) = 26*(26+1)/2 = 351 = 3^3 * 13.
a(6) = 36 because T(36) = 36*(36+1)/2 = 666 = 2 * 3^2 * 37.
a(27) = 100 because T(100) = 100*(100+1)/2 = 5050 = 2 * 5^2 * 101.
a(57) = 210 because T(210) = 210*(210+1)/2 = 22155 = 3 * 5 * 7 * 211 (again, 210 = primorial 4#).
		

Crossrefs

Programs

Formula

{a(n)} = {k such that A001222(A000217(k)) = 4}. {a(n)} = {k such that k*(k+1)/2 has exactly 4 prime factors, with multiplicity}. {a(n)} = {k such that A000217(k) is an element of A014613}.
{ m : A069904(m) = 4 }. - Alois P. Heinz, Aug 05 2019