A114435 Indices of 4-almost prime triangular numbers.
8, 16, 20, 23, 26, 36, 40, 45, 49, 50, 51, 53, 59, 60, 62, 65, 68, 69, 74, 76, 77, 83, 88, 89, 91, 92, 100, 103, 105, 110, 114, 115, 117, 123, 126, 129, 131, 136, 139, 146, 149, 150, 151, 154, 156, 165, 169, 182, 185, 186, 187, 194, 196, 197, 198, 206, 210
Offset: 1
Examples
a(1) = 8 because T(8) = TriangularNumber(8) = 8*(8+1)/2 = 36 = 2^2 * 3^2 is a 4-almost prime. a(2) = 16 because T(16) = 16*(16+1)/2 = 136 = 2^3 * 17 is a 4-almost prime. a(3) = 20 because T(20) = 20*(20+1)/2 = 210 = 2 * 3 * 5 * 7 (210 = primorial 4#). a(4) = 23 because T(23) = 23*(23+1)/2 = 276 = 2^2 * 3 * 23. a(5) = 26 because T(26) = 26*(26+1)/2 = 351 = 3^3 * 13. a(6) = 36 because T(36) = 36*(36+1)/2 = 666 = 2 * 3^2 * 37. a(27) = 100 because T(100) = 100*(100+1)/2 = 5050 = 2 * 5^2 * 101. a(57) = 210 because T(210) = 210*(210+1)/2 = 22155 = 3 * 5 * 7 * 211 (again, 210 = primorial 4#).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Triangular Number.
- Eric Weisstein's World of Mathematics, Almost Prime.
Programs
-
Mathematica
Flatten[Position[Accumulate[Range[800]], ?(PrimeOmega[#]== 4 &)]] (* _Vincenzo Librandi, Apr 09 2014 *)
-
PARI
is(n)=my(t=bigomega(n/gcd(n,2))); if(t<3, bigomega((n+1)/gcd(n+1,2))+t==4, t==3 && isprime((n+1)/gcd(n+1,2))) \\ Charles R Greathouse IV, Jun 14 2017