A114456 Numbers k such that the k-th hexagonal number is a 5-almost prime.
8, 14, 16, 18, 20, 24, 28, 36, 38, 40, 41, 44, 54, 74, 77, 78, 84, 86, 90, 92, 100, 102, 105, 110, 113, 123, 124, 125, 126, 130, 132, 135, 136, 143, 148, 149, 153, 156, 164, 165, 170, 171, 184, 185, 186, 194, 207, 210, 213, 215, 218, 220, 225, 232, 234, 236
Offset: 1
Examples
a(1) = 8 because HexagonalNumber(8) = H(8) = 8*(2*8-1) = 120 = 2^3 * 3 * 5 is a 5-almost prime. a(2) = 14 because H(14) = 14*(2*14-1) = 378 = 2 * 3^3 * 7 is a 5-almost prime. a(3) = 18 because H(18) = 18*(2*18-1) = 630 = 2 * 3^2 * 5 * 7 is a 5-almost prime. a(20) = 100 because H(100) = 100*(2*100-1) = 19900 = 2^2 * 5^2 * 199 is a 5-almost prime.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harvey P. Dale)
- Eric Weisstein's World of Mathematics, Almost Prime.
- Eric Weisstein's World of Mathematics, Hexagonal Number.
Programs
-
Mathematica
Select[Range[300], PrimeOmega[#*(2*# - 1)] == 5 &] (* Giovanni Resta, Jun 14 2016 *) Select[Range[300],PrimeOmega[PolygonalNumber[6,#]]==5&] (* Harvey P. Dale, Jan 15 2023 *)
Formula
Extensions
Missing a(3)=16 and more terms from Giovanni Resta, Jun 14 2016
Comments