cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114462 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n having k ascents of length 2 starting at an even level (0<=k<=floor(n/2)).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 6, 7, 1, 18, 19, 5, 54, 59, 18, 1, 166, 191, 65, 7, 522, 631, 242, 34, 1, 1670, 2123, 906, 154, 9, 5418, 7247, 3395, 680, 55, 1, 17786, 25011, 12746, 2932, 300, 11, 58974, 87071, 47931, 12414, 1540, 81, 1, 197226, 305275, 180439, 51878, 7552
Offset: 0

Views

Author

Emeric Deutsch, Nov 29 2005

Keywords

Comments

Row n has 1+floor(n/2) terms. Row sums are the Catalan numbers (A000108). Sum(kT(n,k), k=0..floor(n/2)) = binomial(2n-3,n-1)-binomial(2n-4,n) = A077587(n-2) (n>=2). Column 0 yields A114464.

Examples

			T(4,1) = 7 because we have (UU)DDUDUD, UD(UU)DDUD, UDUD(UU)DD, (UU)DUDDUD,
UD(UU)DUDD, (UU)DUDUDD and (UU)DUUDDD, where U=(1,1), D=(1,-1) (the ascents of length 2 starting at an even level are shown between parentheses; note that the last path has an ascent of length 2 that starts at an odd level).
Triangle starts:
1;
1;
1,   1;
2,   3;
6,   7,  1;
18, 19,  5;
54, 59, 18, 1;
		

Crossrefs

Programs

  • Maple
    G:= 1/2/z*(3*z^2+2*z^3*t+1-z^3*t^2-3*z^2*t-z^3+t*z-z -sqrt(1+20*z^3*t-18*z^5*t^2+15*z^4*t^2+18*z^5*t+6*z^5*t^3-2*z^4*t^3-12*z^2*t -12*z^3 -6*z-24*z^4*t-8*z^3*t^2+z^6-6*z^5+11*z^4 +z^2*t^2+6*z^6*t^2 -4*z^6*t^3 -4*z^6*t+z^6*t^4+2*t*z +11*z^2)): Gser:=simplify(series(G,z=0,17)): P[0]:=1: for n from 1 to 14 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 14 do seq(coeff(t*P[n],t^j),j=1..1+floor(n/2)) od; # yields sequence in triangular form
    # second Maple program:
    b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0,
          `if`(t=2, z, 1), expand(b(x-1, y-1, min(3, t+1))+
          `if`(t=2 and irem(y, 2)=0, z, 1)*b(x-1, y+1, 0))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0$2)):
    seq(T(n), n=0..14);  # Alois P. Heinz, Mar 12 2014
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x==0, If[t==2, z, 1], Expand[ b[x-1, y-1, Min[3, t+1]] + If[t==2 && Mod[y, 2]==0, z, 1]*b[x-1, y+1, 0]]]]; T[n_] := Function[{p}, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[2*n, 0, 0]]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Mar 31 2015, after Alois P. Heinz *)

Formula

G.f.: G(t,z) satisfies zG^2-(1-z+tz-3tz^2+3z^2-z^3-t^2z^3+2tz^3)G+1-z+z^2+tz-tz^2=0.