cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A114464 Number of Dyck paths of semilength n having no ascents of length 2 that start at an even level.

Original entry on oeis.org

1, 1, 1, 2, 6, 18, 54, 166, 522, 1670, 5418, 17786, 58974, 197226, 664494, 2253390, 7685394, 26345230, 90721362, 313682098, 1088609142, 3790610306, 13239554790, 46371693174, 162835695258, 573160873750, 2021885799162, 7146955776554
Offset: 0

Views

Author

Emeric Deutsch, Nov 29 2005

Keywords

Comments

Column 0 of A114462.

Examples

			a(4)=6 because we have UDUDUDUD, UDUUUDDD, UUUDDDUD, UUUDUDDD, UUUDDUDD and UUUUDDDD, where U=(1,1), D=(1,-1).
		

Crossrefs

Programs

  • Maple
    G:=(1-z+3*z^2-z^3-(1-z)*sqrt((1-4*z+z^2)*(1+z^2)))/2/z: Gser:=series(G,z=0,33): 1,seq(coeff(Gser,z^n),n=1..30);
  • Mathematica
    CoefficientList[Series[(1-x+3*x^2-x^3-(1-x)*Sqrt[(1-4*x+x^2)*(1+x^2)])/2/x, {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 13 2014 *)

Formula

G.f.=[1-z+3z^2-z^3-(1-z)sqrt((1-4z+z^2)(1+z^2))]/(2z).
G.f. 1+x/(1-x)c(x^2/(1-x)^4), c(x) the g.f. of A000108; a(n+1)=sum{k=0..floor(n/2), C(n+2k,4k)C(k)}; - Paul Barry, May 31 2006
Conjecture: (n+1)*a(n) +(-5*n+3)*a(n-1) +2*(3*n-7)*a(n-2) +2*(-3*n+11)*a(n-3) +(5*n-27)*a(n-4) +(-n+7)*a(n-5)=0. - R. J. Mathar, Nov 26 2012
Recurrence: (n-3)*(n+1)*a(n) = (4*n^2 - 14*n + 9)*a(n-1) - (2*n^2 - 10*n + 15)*a(n-2) + (4*n^2 - 26*n + 39)*a(n-3) - (n-6)*(n-2)*a(n-4). - Vaclav Kotesovec, Feb 13 2014
a(n) ~ sqrt(2*sqrt(3)-3) * (2+sqrt(3))^n / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 13 2014

A114465 Number of Dyck paths of semilength n having no ascents of length 2 that start at an odd level.

Original entry on oeis.org

1, 1, 2, 5, 13, 36, 105, 317, 982, 3105, 9981, 32520, 107157, 356481, 1195662, 4038909, 13728369, 46919812, 161143157, 555857157, 1924956954, 6689953057, 23325404153, 81567552320, 286009944649, 1005371062561, 3542175587306
Offset: 0

Views

Author

Emeric Deutsch, Nov 29 2005

Keywords

Comments

Column 0 of A114463.

Examples

			a(4)=13 because among the 14 Dyck paths of semilength 4 only UUD(UU)DDD has an ascent of length 2 that starts at an odd level (shown between parentheses).
		

Crossrefs

Programs

  • Maple
    g:=-1/2/z/(1+z^2-z)*(z^2-1+sqrt((z^2+1)*(z^2-4*z+1))): gser:=series(g,z=0,33): 1,seq(coeff(gser,z^n),n=1..30);
  • Mathematica
    CoefficientList[Series[(1-x^2-Sqrt[(1+x^2)*(1-4*x+x^2)])/(2*x*(1-x+x^2)), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
  • PARI
    Vec((1 - x^2 - sqrt((1+x^2)*(1-4*x+x^2)))/(2*x*(1-x+x^2)) + O(x^50)) \\ G. C. Greubel, Jan 28 2017

Formula

G.f.: [1 - z^2 - sqrt((1+z^2)*(1-4z+z^2))]/[2*z*(1-z+z^2)].
(n+1)*a(n) = (5*n-1)*a(n-1) - (7*n-5)*a(n-2) + 10*(n-2)*a(n-3) - (7*n-23)*a(n-4) + (5*n-19)*a(n-5) - (n-5)*a(n-6). - Vaclav Kotesovec, Mar 20 2014
a(n) ~ sqrt(24+14*sqrt(3)) * (2+sqrt(3))^n / (6 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Mar 20 2014

A114463 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n having k ascents of length 2 starting at an odd level (0<=k<=floor(n/2)-1 for n>=2; k=0 for n=0,1).

Original entry on oeis.org

1, 1, 2, 5, 13, 1, 36, 6, 105, 26, 1, 317, 104, 8, 982, 402, 45, 1, 3105, 1522, 225, 10, 9981, 5693, 1052, 69, 1, 32520, 21144, 4698, 412, 12, 107157, 78188, 20319, 2249, 98, 1, 356481, 288340, 85864, 11522, 679, 14, 1195662, 1061520, 356535, 56360, 4230
Offset: 0

Views

Author

Emeric Deutsch, Nov 29 2005

Keywords

Comments

Row n (n>=2) has floor(n/2) terms. Row sums are the Catalan numbers (A000108). Sum(kT(n,k),k=0..floor(n/2)-1)=binomial(2n-4,n) (A002694). Column 0 yields A114465.

Examples

			T(5,1) = 6 because we have UUD(UU)DUDDD, UUD(UU)DDUDD, UUD(UU)DDDUD,
UDUUD(UU)DDD, UUDUD(UU)DDD and UUUDD(UU)DDD, where U=(1,1), D=(1,-1) (the ascents of length 2 starting at an odd level are shown between parentheses; note that the fourth path has an ascent of length 2 that starts at an even level).
Triangle starts:
:  0 :    1;
:  1 :    1;
:  2 :    2;
:  3 :    5;
:  4 :   13,    1;
:  5 :   36,    6;
:  6 :  105,   26,    1;
:  7 :  317,  104,    8;
:  8 :  982,  402,   45,  1;
:  9 : 3105, 1522,  225, 10;
: 10 : 9981, 5693, 1052, 69, 1;
		

Crossrefs

Programs

  • Maple
    G:=-1/2*(1-z^2+z^2*t-sqrt((z^2*t-z^2+4*z-1)*(z^2*t-z^2-1)))/z/(-z^2+z^2*t+z-z*t-1): Gser:=simplify(series(G,z=0,18)): P[0]:=1: for n from 1 to 15 do P[n]:=coeff(Gser,z^n) od: 1; 1; for n from 2 to 15 do seq(coeff(t*P[n],t^j),j=1..floor(n/2)) od; # yields sequence in triangular form
    # second Maple program:
    b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, 1, expand(b(x-1, y+1, [2, 2, 2, 5, 2][t])
          *`if`(t=5, z, 1) +b(x-1, y-1, [1, 3, 4, 1, 3][t]))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 1)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Jun 10 2014
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x==0, 1, Expand[b[x-1, y+1, {2, 2, 2, 5, 2}[[t]]]*If[t==5, z, 1] + b[x-1, y-1, {1, 3, 4, 1, 3}[[t]]]]]]; T[n_] := Function[{p}, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[2*n, 0, 1]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Mar 31 2015, after Alois P. Heinz *)

Formula

G.f.: G=G(t, z) satisfies z[(1-t)z^2-(1-t)z+1]G^2-[1-(1-t)z^2]G+1=0.

A077587 a(n) = C(n+1) + n*C(n) where C = A000108 (Catalan numbers).

Original entry on oeis.org

1, 3, 9, 29, 98, 342, 1221, 4433, 16302, 60554, 226746, 854658, 3239044, 12332140, 47137005, 180780345, 695367510, 2681600130, 10364759790, 40142121030, 155748675420, 605274171060, 2355676013730, 9180275261274, 35819645937228
Offset: 0

Views

Author

Michael Somos, Nov 09 2002

Keywords

Comments

Number of ascents of length 2 starting at an even level in all Dyck paths of semilength n+2. Example: a(1)=3 because all Dyck paths of semilength 3 are UDUDUD, UD(UU)DD, (UU)DDUD, (UU)DUDD and UUUDDD, where U=(1,1), D=(1,-1), having altogether 3 ascents of length 2 that start at an even level (shown between parentheses). - Emeric Deutsch, Nov 29 2005
a(n) is the number of parking functions of size n+1 avoiding the patterns 132, 231, and 321. - Lara Pudwell, Apr 10 2023

Crossrefs

Programs

  • Maple
    egf := x -> exp(2*x)*(1+1/x)*BesselI(1, 2*x);
    seq(n!*coeff(series(egf(x), x, n+2), x, n), n=0..24); # Peter Luschny, Apr 14 2014
  • Mathematica
    Table[(CatalanNumber[n + 1] + n CatalanNumber[n]), {n, 0, 40}] (* Vincenzo Librandi, Apr 15 2014 *)
  • PARI
    a(n)=if(n<0,0,(n^2+6*n+2)*(2*n)!/n!/(n+2)!)
    
  • PARI
    a(n)=if(n<0,0,polcoeff((4+x+1/x-(x+1/x)^2)*(1+x)^(2*n),n)/2)

Formula

a(n) = binomial(2n+1, n+1) - binomial(2n, n+2).
a(n) = (3*(3*n+2)*a(n-1) - 2*(11*n-7)*a(n-2) + 4*(2*n-5)*a(n-3))/(n+2), n>2.
G.f.: A(x) = (1 - 3*x - (1-5*x+2*x^2)/sqrt(1-4*x) )/(2*x^2) satisfies 0 = (x^2+4*x-1) + (12*x^2-7*x+1)*A + (4*x^3-x^2)*A^2.
E.g.f.: A(x) = (1+x)B(x)' where B(x) = e.g.f. of A000108.
a(n) = Sum_{k=0..n} binomial(n,k)*A057977(k)*2^(n-k); here the A057977 are understood as the extended Catalan numbers (see also A063549). Related to Touchard's identity. - Peter Luschny, Jul 14 2016
a(n) ~ 4^n/sqrt(Pi*n). - Ilya Gutkovskiy, Jul 14 2016
Asymptotic starts a(n) ~ (4^n/sqrt(Pi*n))*(1 + (23/2^3)/n - (1199/2^7)/n^2 +(22685/2^10)/n^3 - (1562421/2^15)/n^4 + ... ). - Peter Luschny, Jul 14 2016
Showing 1-4 of 4 results.