cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114469 Number of decimal digits in Lucas(10^n).

Original entry on oeis.org

1, 3, 21, 209, 2090, 20899, 208988, 2089877, 20898765, 208987641, 2089876403, 20898764025, 208987640250, 2089876402500, 20898764024998, 208987640249979, 2089876402499788, 20898764024997874, 208987640249978734, 2089876402499787338, 20898764024997873377, 208987640249978733770, 2089876402499787337693, 20898764024997873376928, 208987640249978733769273, 2089876402499787337692721
Offset: 0

Views

Author

Eric W. Weisstein, Nov 30 2005

Keywords

Comments

From Hans J. H. Tuenter, Jul 15 2025: (Start)
This sequence can be constructed by taking the first n digits of the decimal expansion of log_10(phi) = A097348 and adding 1. For example,
a(0) = 1,
a(1) = 2+1 = 3,
a(2) = 20+1 = 21,
a(3) = 208+1 = 209,
a(4) = 2089+1 = 2090,
a(5) = 20898+1 = 20899.
Alternatively, a(n)-1 is the first n digits of A097348. (End)
The individual digits of log_10(phi), and thus sequence A097348, can be extracted using d(n) = a(n)-10*a(n-1)+9. - Hans J. H. Tuenter, Jul 25 2025

Crossrefs

Cf. A068070. - R. J. Mathar, Dec 13 2008

Programs

Formula

Limit_{n->oo} a(n)/10^n = A097348. - Amiram Eldar, Apr 14 2022
a(n) = 1+floor(10^n*log_10(phi)), where phi = (1+sqrt(5))/2, the golden ratio. - Hans J. H. Tuenter, Jul 13 2025.
From Hans J. H. Tuenter, Jul 25 2025: (Start)
a(n) = 1 + Sum_{i=0..n} d(i)*10^(n-i),
a(n) = 10*a(n-1)-9+d(n),
where d(i) = A097348(i-1) is the coefficient of 10^(-i) in the decimal expansion of log_10(phi). (End)

Extensions

a(8)-a(10) from Amiram Eldar, Apr 14 2022
a(11)-a(25) from Hans J. H. Tuenter, Jul 15 2025