cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114494 Triangle read by rows: T(n,k) is number of hill-free Dyck paths of semilength n and having k returns to the x-axis. (A Dyck path is said to be hill-free if it has no peaks at level 1.)

Original entry on oeis.org

0, 1, 2, 5, 1, 14, 4, 42, 14, 1, 132, 48, 6, 429, 165, 27, 1, 1430, 572, 110, 8, 4862, 2002, 429, 44, 1, 16796, 7072, 1638, 208, 10, 58786, 25194, 6188, 910, 65, 1, 208012, 90440, 23256, 3808, 350, 12, 742900, 326876, 87210, 15504, 1700, 90, 1, 2674440, 1188640
Offset: 1

Views

Author

Emeric Deutsch, Dec 01 2005

Keywords

Comments

Row 1 contains one term; row n contains floor(n/2) terms (n >= 2). Row sums are the Fine numbers (A000957). Column 1 yields the Catalan numbers (n >= 2). Sum_{k=1..floor(n/2)} k*T(n,k) = A114495(n).
From Colin Defant, Sep 15 2018: (Start)
Let theta_{n-1,k-1} be the permutation k(k-1)...1(k+1)(k+2)...(n-1) obtained by concatenating the decreasing string k...1 with the increasing string (k+1)...(n-1). T(n,k) is the number of preimages of theta_{n-1,k-1} under West's stack-sorting map.
If pi is any permutation of [n-1] with exactly k-1 descents, then |s^{-1}(pi)| <= T(n,k), where s denotes West's stack-sorting map. (End)

Examples

			T(5,2)=4 because we have UUD(D)UUDUD(D), UUD(D)UUUDD(D), UUDUD(D)UUD(D) and UUUDD(D)UUD(D), where U=(1,1), D=(1,-1) (returns to the axis are shown between parentheses).
Triangle starts:
    0;
    1;
    2;
    5,   1;
   14,   4;
   42,  14,   1;
  132,  48,   6;
  429, 165,  27,   1;
		

Crossrefs

Programs

  • Magma
    /* except 0 as triangle */ [[(k/(n-k))*Binomial(2*n-2*k, n-2*k): k in [1..n div 2]]: n in [2.. 15]]; // Vincenzo Librandi, Sep 15 2018
  • Maple
    T:=proc(n,k) if k<=floor(n/2) then k*binomial(2*n-2*k,n-2*k)/(n-k) else 0 fi end: 0; for n from 2 to 15 do seq(T(n,k),k=1..floor(n/2)) od; # yields sequence in triangular form
  • Mathematica
    Join[{0}, t[n_, k_]:=(k/(n - k)) Binomial [2 n - 2 k, n - 2 k]; Table[t[n, k], {n, 1, 20}, {k, n/2}]//Flatten] (* Vincenzo Librandi, Sep 15 2018 *)

Formula

T(n, k) = (k/(n-k))*binomial(2*n-2*k, n-2*k) (1 <= k <= floor(n/2)).
G.f.: 1/(1-tz^2*C^2)-1, where C=(1-sqrt(1-4z))/(2z) is the Catalan function.