A114494 Triangle read by rows: T(n,k) is number of hill-free Dyck paths of semilength n and having k returns to the x-axis. (A Dyck path is said to be hill-free if it has no peaks at level 1.)
0, 1, 2, 5, 1, 14, 4, 42, 14, 1, 132, 48, 6, 429, 165, 27, 1, 1430, 572, 110, 8, 4862, 2002, 429, 44, 1, 16796, 7072, 1638, 208, 10, 58786, 25194, 6188, 910, 65, 1, 208012, 90440, 23256, 3808, 350, 12, 742900, 326876, 87210, 15504, 1700, 90, 1, 2674440, 1188640
Offset: 1
Examples
T(5,2)=4 because we have UUD(D)UUDUD(D), UUD(D)UUUDD(D), UUDUD(D)UUD(D) and UUUDD(D)UUD(D), where U=(1,1), D=(1,-1) (returns to the axis are shown between parentheses). Triangle starts: 0; 1; 2; 5, 1; 14, 4; 42, 14, 1; 132, 48, 6; 429, 165, 27, 1;
Links
- C. Defant, Preimages under the stack-sorting algorithm, arXiv:1511.05681 [math.CO], 2015-2018.
- C. Defant, Preimages under the stack-sorting algorithm, Graphs Combin., 33 (2017), 103-122.
- C. Defant, Stack-sorting preimages of permutation classes, arXiv:1809.03123 [math.CO], 2018.
- E. Deutsch and L. Shapiro, A survey of the Fine numbers, Discrete Math., 241 (2001), 241-265.
Programs
-
Magma
/* except 0 as triangle */ [[(k/(n-k))*Binomial(2*n-2*k, n-2*k): k in [1..n div 2]]: n in [2.. 15]]; // Vincenzo Librandi, Sep 15 2018
-
Maple
T:=proc(n,k) if k<=floor(n/2) then k*binomial(2*n-2*k,n-2*k)/(n-k) else 0 fi end: 0; for n from 2 to 15 do seq(T(n,k),k=1..floor(n/2)) od; # yields sequence in triangular form
-
Mathematica
Join[{0}, t[n_, k_]:=(k/(n - k)) Binomial [2 n - 2 k, n - 2 k]; Table[t[n, k], {n, 1, 20}, {k, n/2}]//Flatten] (* Vincenzo Librandi, Sep 15 2018 *)
Formula
T(n, k) = (k/(n-k))*binomial(2*n-2*k, n-2*k) (1 <= k <= floor(n/2)).
G.f.: 1/(1-tz^2*C^2)-1, where C=(1-sqrt(1-4z))/(2z) is the Catalan function.
Comments