A114496 a(n) = Sum of binomial(n,k)*binomial(2n+k,k) over all k.
1, 4, 26, 190, 1462, 11584, 93536, 765314, 6323270, 52638760, 440815036, 3709445084, 31340292076, 265683004240, 2258793820988, 19251776923210, 164440378882630, 1407266585304760, 12063701803046300, 103571977632247076
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- P. Barry, A Note on a Family of Generalized Pascal Matrices Defined by Riordan Arrays, Journal of Integer Sequences, 16 (2013), #13.5.4.
Programs
-
Mathematica
Table[Sum[Binomial[n, k]*Binomial[2n+k, k], {k, 0, n}], {n,0,25}]
-
PARI
a(n) = sum(k=0, n, 2^(n-k)*binomial(2*n,k)*binomial(n,k)); vector(50, n, a(n-1)) \\ Altug Alkan, Oct 05 2015
Formula
a(n) = Sum_{k=0..n} (binomial(n,k)*binomial(2n+k,k)).
Recurrence: 20*n*(2*n - 1)*a(n) = (371*n^2 - 411*n + 120)*a(n-1) -2*(81*n^2 - 299*n + 278)*a(n-2) + 4*(n-2)*(2*n-5)*a(n-3). - Vaclav Kotesovec, Oct 19 2012
a(n) ~ sqrt(1734 + 442*sqrt(17))*((71 + 17*sqrt(17))/16)^n/(68*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 19 2012
From Peter Bala, Oct 05 2015: (Start)
a(n) = Sum_{i = 0..n} 2^(n-i)*binomial(2*n,i)*binomial(n,i).
4*n*(2*n - 1)*(17*n - 23)*a(n) = (1207*n^3 - 2840*n^2 + 1897*n - 360)*a(n-1) - 2*(n - 1)*(17*n - 6)*(2*n - 3)*a(n-2) with a(0) = 1 and a(1) = 4.
1 + x*exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 4*x^2 + 21*x^3 + 126*x^4 + ... is the o.g.f. for A003168. (End)
Comments