A003168
Number of blobs with 2n+1 edges.
Original entry on oeis.org
1, 1, 4, 21, 126, 818, 5594, 39693, 289510, 2157150, 16348960, 125642146, 976789620, 7668465964, 60708178054, 484093913917, 3884724864390, 31348290348086, 254225828706248, 2070856216759478, 16936016649259364
Offset: 0
a(2)=4 because we may place exactly one diagonal in 3 ways (forming 2 quadrilaterals), or not place any (leaving 1 hexagon).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 0..1000 (terms 0..100 from T. D. Noe)
- Thomas H. Bertschinger, Joseph Slote, Olivia Claire Spencer, and Samuel Vinitsky, The Mathematics of Origami, Undergrad Thesis, Carleton College (2016).
- D. Birmajer, J. B. Gil, and M. D. Weiner, Colored partitions of a convex polygon by noncrossing diagonals, arXiv preprint arXiv:1503.05242 [math.CO], 2015.
- L. Carlitz, Enumeration of two-line arrays, Fib. Quart., Vol. 11 Number 2 (1973), 113-130.
- Frédéric Chapoton and Philippe Nadeau, Combinatorics of the categories of noncrossing partitions, Séminaire Lotharingien de Combinatoire 78B (2017), Article #37.
- Michael Drmota, Anna de Mier, and Marc Noy, Extremal statistics on non-crossing configurations, Discrete Math. 327 (2014), 103--117. MR3192420. See p. 116, B_b(z). - N. J. A. Sloane, May 18 2014
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 415
- Elżbieta Liszewska and Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
- Jean-Christophe Novelli and Jean-Yves Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014.
- Jean-Christophe Novelli and Jean-Yves Thibon, Noncommutative Symmetric Functions and Lagrange Inversion II: Noncrossing partitions and the Farahat-Higman algebra, arXiv:2106.08257 [math.CO], 2021-2022.
- Ronald C. Read, On the enumeration of a class of plane multigraphs, Aequat. Math. 31 (1986) No. 1, 47-63.
- L. Smiley, Even-gon reference
- Jun Yan, Results on pattern avoidance in parking functions, arXiv:2404.07958 [math.CO], 2024. See p. 30.
-
import Data.List (transpose)
a003168 0 = 1
a003168 n = sum (zipWith (*)
(tail $ a007318_tabl !! n)
((transpose $ take (3*n+1) a007318_tabl) !! (2*n+1)))
`div` fromIntegral n
-- Reinhard Zumkeller, Oct 27 2013
-
Order := 40; solve(series((A-2*A^3)/(1-A^2),A)=x,A);
A003168 := n -> `if`(n=0,1,A100327(n)/2): seq(A003168(n),n=0..20); # Peter Luschny, Jun 10 2017
-
a[0] = 1; a[n_] = (2^(-n-1)*(3n)!* Hypergeometric2F1[-1-2n, -2n, -3n, -1])/((2n+1)* n!*(2n)!); Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 25 2011, after Vladimir Kruchinin *)
-
a(n)=if(n<0,0,polcoeff(serreverse((x-2*x^3)/(1-x^2)+O(x^(2*n+2))),2*n+1))
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=(1+x*A)/(1-x*A)^2); sum(k=0,n,polcoeff(A^(n-k),k))} \\ Paul D. Hanna, Nov 17 2004
-
seq(n) = Vec( 1 + serreverse(x/((1+2*x)*(1+x)^2) + O(x*x^n)) ) \\ Andrew Howroyd, Mar 07 2023
A156894
a(n) = Sum_{k=0..n} binomial(n,k)*binomial(2*n+k-1,k).
Original entry on oeis.org
1, 3, 19, 138, 1059, 8378, 67582, 552576, 4563235, 37972290, 317894394, 2674398268, 22590697614, 191475925332, 1627653567916, 13870754053388, 118464647799075, 1013709715774130, 8689197042438274, 74594573994750972, 641252293546113434, 5519339268476249676, 47558930664216470628
Offset: 0
-
A156894:= func< n | (&+[ Binomial(n,k)*Binomial(2*n+k-1,k): k in [0..n]]) >;
[A156894(n): n in [0..30]]; // G. C. Greubel, Jan 06 2022
-
a := n -> hypergeom([-n, 2*n], [1], -1);
seq(round(evalf(a(n),32)), n=0..19); # Peter Luschny, Aug 02 2014
-
Table[Sum[Binomial[n,k]Binomial[2n+k-1,k],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Nov 12 2014 *)
-
a(n) = if (n < 1, 1, sum(k=0, n, binomial(n,k)*binomial(2*n+k-1,k)));
vector(50, n, a(n-1)) \\ Altug Alkan, Oct 05 2015
-
[round( hypergeometric([-n, 2*n], [1], -1) ) for n in (0..30)] # G. C. Greubel, Jan 06 2022
A339710
a(n) = Sum_{k=0..n} binomial(n, k)*binomial(2*n + k, k)*2^k.
Original entry on oeis.org
1, 7, 81, 1051, 14353, 201807, 2891409, 41976627, 615371169, 9089130967, 135048608401, 2016306678987, 30224723308081, 454603719479839, 6857319231939537, 103694587800440931, 1571449259865571137, 23860205774602899111, 362897293035114695121, 5527773456878667951483
Offset: 0
- Frits Beukers, Some Congruences for Apery Numbers, Mathematisch Instituut, University of Leiden, 1983, pages 1-2.
Cf.
A000079 (Sum(binomial(n, k))),
A000984 (Sum(binomial(n, k)^2)),
A026375 (Sum(binomial(n, k)*binomial(2*k, k))),
A001850 (Sum(binomial(n, k)*binomial(n+k, k))),
A005809 (Sum(binomial(n, k)*binomial(2*n, k))).
-
Table[Sum[Binomial[n,k]*Binomial[2n+k,k]*2^k,{k,0,n}],{n,0,20}] (* or *)
Table[Hypergeometric2F1[-n,1+2 n,1,-2],{n,0,20}] (* Stefano Spezia, Dec 17 2020 *)
-
a(n) = sum(k=0, n, binomial(n, k)*binomial(2*n + k, k)*2^k); \\ Michel Marcus, Feb 12 2021
A156886
a(n) = Sum_{k=0..n} C(n,k)*C(3*n+k,k).
Original entry on oeis.org
1, 5, 43, 416, 4239, 44485, 475780, 5156548, 56437231, 622361423, 6904185523, 76964141600, 861408728964, 9673849095708, 108954068684616, 1230185577016156, 13920106205444335, 157814104889538739
Offset: 0
-
A156886 := proc(n)
add(binomial(n,k)*binomial(3*n+k,k), k = 0..n);
end proc:
seq(A156886(n), n = 0..20); # Peter Bala, Feb 11 2018
-
a[n_] := Sum[ Binomial[n, k] Binomial[3n + k, k], {k, 0, n}]; Array[a, 21, 0] (* Robert G. Wilson v, Feb 11 2018 *)
A156887
a(n) = Sum_{k=0..n} C(n,k)*C(4*n+k,k).
Original entry on oeis.org
1, 6, 64, 768, 9708, 126386, 1676956, 22548168, 306167324, 4188703512, 57649462164, 797294161824, 11071026740964, 154250752864812, 2155368246401224, 30192512693210888, 423859798484668188, 5961793387214958792, 83998039356129372448, 1185277027372535468544
Offset: 0
-
A156887 := proc(n)
add(binomial(n,k)*binomial(4*n+k,k),k=0..n) ;
end proc: # R. J. Mathar, Feb 25 2015
-
Table[Sum[Binomial[n,k]Binomial[4n+k,k],{k,0,n}],{n,0,30}] (* Harvey P. Dale, Jul 24 2018 *)
-
{a(n) = sum(k=0, n, binomial(n, k)*binomial(4*n+k, k))} \\ Seiichi Manyama, Feb 02 2019
A114497
Numerators of Apéry-style convergents to 4/11 log 2.
Original entry on oeis.org
0, 1, 865, 12643, 13619843, 323746091, 115021083581, 2224431220019, 161734891776923, 57221149255770431, 7283680944060726343, 655528909167704911, 8662089991175424531107, 33378033361711480198829
Offset: 0
A114498
Denominators of Apéry-style convergents to 4/11 log 2.
Original entry on oeis.org
1, 4, 3432, 50160, 54035520, 1284433920, 456335953920, 8825233697280, 641668847339520, 227019837729484800, 28897358537888096256, 2600752842642898944, 34366074253507451879424, 132424388815310703820800
Offset: 0
A359646
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(5*n+k,k).
Original entry on oeis.org
1, 7, 89, 1273, 19181, 297662, 4707971, 75459496, 1221388525, 19919031781, 326797222834, 5387618403526, 89178832899887, 1481143718244912, 24671054686539336, 411966653603163008, 6894167059382069485, 115593504497163747167, 1941434442814233362939, 32656575110841643234631
Offset: 0
-
Table[Sum[Binomial[n, k]*Binomial[5*n+k, k], {k, 0, n}], {n, 0, 20}]
-
a(n) = sum(k=0, n, binomial(n,k) * binomial(5*n+k,k)) \\ Andrew Howroyd, Jan 09 2023
A268543
The diagonal of 1/(1 - (y + z + x z + x w + x y w)).
Original entry on oeis.org
1, 8, 156, 3800, 102340, 2919168, 86427264, 2626557648, 81380484900, 2559296511200, 81443222791216, 2616761264496288, 84749038859067856, 2763262653898544000, 90615128199047200800, 2986287891921565639200, 98841887070519004625700
Offset: 0
- Gheorghe Coserea, Table of n, a(n) for n = 0..310
- A. Bostan, S. Boukraa, J.-M. Maillard, J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015.
- S. Eger, On the Number of Many-to-Many Alignments of N Sequences, arXiv:1511.00622 [math.CO], 2015.
- Jacques-Arthur Weil, Supplementary Material for the Paper "Diagonals of rational functions and selected differential Galois groups"
-
A268543 := proc(n)
1/(1-y-z-x*z-x*w-x*y*w) ;
coeftayl(%,x=0,n) ;
coeftayl(%,y=0,n) ;
coeftayl(%,z=0,n) ;
coeftayl(%,w=0,n) ;
end proc:
seq(A268543(n),n=0..40) ; # R. J. Mathar, Mar 11 2016
#alternative program
with(combinat):
seq(binomial(2*n,n)*add(binomial(n,k)*binomial(2*n+k,k), k = 0..n), n = 0..20); # Peter Bala, Jan 27 2018
-
CoefficientList[Series[HypergeometricPFQ[{1/12, 5/12}, {1}, 1728*x^3*(2 - 71*x + 16*x^2)/(1 - 32*x + 16*x^2)^3]*(1 - 32*x + 16*x^2)^(-1/4), {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 05 2016 *)
-
my(x='x, y='y, z='z, w='w);
R = 1/(1 - x - y - z - x*y);
diag(n, expr, var) = {
my(a = vector(n));
for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n));
for (k = 1, n, a[k] = expr;
for (i = 1, #var, a[k] = polcoeff(a[k], k-1)));
return(a);
};
diag(10, R, [x,y,z])
-
\\ system("wget http://www.jjj.de/pari/hypergeom.gpi");
read("hypergeom.gpi");
N = 20; x = 'x + O('x^N);
Vec(hypergeom_sym([1/12,5/12],[1],1728*x^3*(16*x^2-71*x+2)/(16*x^2-32*x+1)^3, N)/(16*x^2-32*x+1)^(1/4)) \\ Gheorghe Coserea, Jul 03 2016
A306280
a(n) = Sum_{k=0..n} binomial(n,k)*binomial(n^2+k,k).
Original entry on oeis.org
1, 3, 26, 416, 9708, 297662, 11306572, 512307336, 26968496504, 1617489748394, 108885682104744, 8129721925098468, 666736347200187804, 59582961423951290184, 5762936296492591067968, 599807329803134064385488, 66843498592187788579795440
Offset: 0
-
a[n_] := Sum[Binomial[n,k] * Binomial[n^2+k,k], {k, 0, n}]; Array[a, 20, 0] (* Amiram Eldar, Feb 03 2019 *)
-
{a(n) = sum(k=0, n, binomial(n, k)*binomial(n^2+k, k))}
Showing 1-10 of 11 results.
Comments