cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A003169 Number of 2-line arrays; or number of P-graphs with 2n edges.

Original entry on oeis.org

1, 3, 14, 79, 494, 3294, 22952, 165127, 1217270, 9146746, 69799476, 539464358, 4214095612, 33218794236, 263908187100, 2110912146295, 16985386737830, 137394914285538, 1116622717709012, 9113225693455362, 74659999210200292
Offset: 1

Views

Author

Keywords

Comments

First column of triangle A100326. - Paul D. Hanna, Nov 16 2004

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a003169 = flip a100326 0  -- Reinhard Zumkeller, Nov 21 2015
  • Maple
    a[0]:=0:a[1]:=1:a[2]:=3:for n from 3 to 30 do a[n]:=((324*n^2-708*n+360)*a[n-1] -(371*n^2-1831*n+2250)*a[n-2]+(20*n^2-130*n+210)*a[n-3])/(16*n*(2*n-1)) od:seq(a[n],n=1..25); # Emeric Deutsch, Jan 31 2005
  • Mathematica
    lim = 21; t[0, 0] = 1; t[n_, 0] := t[n, 0] = Sum[(k + 1)*t[n - 1, k], {k, 0, n - 1}]; t[n_, k_] := t[n, k] = Sum[t[j + 1, 0]*t[n - j - 1, k - 1], {j, 0, n - k}]; Table[ t[n, 0], {n, lim}] (* Jean-François Alcover, Sep 20 2011, after Paul D. Hanna's comment *)
  • PARI
    {a(n)=if(n==0,0,if(n==1,1,if(n==2,3,( (324*n^2-708*n+360)*a(n-1) -(371*n^2-1831*n+2250)*a(n-2)+(20*n^2-130*n+210)*a(n-3))/(16*n*(2*n-1)) )))} \\ Paul D. Hanna, Nov 16 2004
    
  • PARI
    {a(n)=local(A=x+x*O(x^n));if(n==1,1, for(i=1,n,A=x*(1+A)/(1-A)^2); polcoeff(A,n))}
    
  • PARI
    seq(n)=Vec(serreverse(x*(1 - x)^2/(1 + x) + O(x*x^n))) \\ Andrew Howroyd, Mar 07 2023
    

Formula

For formula see Read reference.
D-finite with recurrence a(n) = ( (324*n^2-708*n+360)*a(n-1) - (371*n^2-1831*n+2250)*a(n-2) + (20*n^2-130*n+210)*a(n-3) )/(16*n*(2*n-1)) for n>2, with a(0)=0, a(1)=1, a(2)=3. - Paul D. Hanna, Nov 16 2004
G.f. satisfies: A(x) = x*(1+A(x))/(1-A(x))^2 where A(0)=0. G.f. satisfies: (1+A(x))/(1-A(x)) = 2*G003168(x)-1, where G003168 is the g.f. of A003168. - Paul D. Hanna, Nov 16 2004
a(n) = (1/n)*Sum_{i=0..n-1} binomial(n,i)*binomial(3*n-i-2,n-i-1). - Vladeta Jovovic, Sep 13 2006
Appears to be (1/n)*Jacobi_P(n-1,1,n-1,3). If so then a(n) = (1/(2*n-1))*Sum_{k = 0..n-1} binomial(n-1,k)*binomial(2*n+k-1,k+1) = (1/n)*Sum_{k = 0..n} binomial(n,k)*binomial(2*n-2,n+k-1)*2^k. [Added Jun 11 2023: these are correct, and can be proved using the WZ algorithm.] - Peter Bala, Aug 01 2012
a(n) ~ sqrt(33/sqrt(17)-7) * ((71+17*sqrt(17))/16)^n / (4*sqrt(2*Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 09 2013
The o.g.f. A(x) = 1 + 3*x + 14*x^2 + ... taken with offset 0, satisfies 1 + x*A'(x)/A(x) = 1 + 3*x + 19*x^2 + 138*x^3 + ..., the o.g.f. for A156894. - Peter Bala, Oct 05 2015
From Peter Bala, Jun 11 2023: (Start)
a(n) = (1/n)*Sum_{k = 0..n-1} binomial(n,k+1)*binomial(2*n+k-1,k) (Carlitz, equation 3.19).
4*n*(17*n - 29)*(2*n - 1)*a(n) = (1207*n^3 - 4473*n^2 + 5258*n - 1920)*a(n-1) - 2*(2*n - 5)*(17*n - 12)*(n - 2)*a(n-2) with a(1) = 1 and a(2) = 3. (End)

Extensions

More terms from Emeric Deutsch, Jan 31 2005

A049124 Revert transform of (-1 + x + x^2)/((x - 1)*(x + 1)).

Original entry on oeis.org

1, 1, 2, 6, 20, 71, 264, 1015, 4002, 16094, 65758, 272208, 1139182, 4811807, 20487096, 87832558, 378846620, 1642851797, 7158220968, 31323340342, 137595355130, 606533278416, 2682157911032, 11895267124841, 52895679368820, 235792891885786, 1053475824902774
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of ways to dissect a convex (n+2)-gon with non-crossing diagonals so that no 2m-gons (m > 1) appear. - Len Smiley
Number of even trees (i.e., ordered trees in which all nodes have even outdegree) with n+1 leaves. - Emeric Deutsch, Mar 06 2002
a(n) is the number of permutations on [n-1] in which the last 2 entries of each 321 pattern are adjacent in position. For example, a(5)=20 counts all permutations on [4] except 3241, 4231, 4312, 4321, the first, for instance because the 2 and 1 are not adjacent. - David Callan, Jul 20 2005
a(n) is the number of directed diagonally convex polyominoes with perimeter 2*n (this holds for every n > 1). - Svjetlan Feretic, Jul 11 2016
From Colin Defant, Sep 17 2018: (Start)
Let L(u,v) be the set of integer partitions whose Young diagrams fit inside a u by v rectangle. Given lambda in L(u,v), let E(lambda) be the number of partitions whose Young diagrams fit inside the Young diagram of lambda. Also, for 1 <= i <= v, let x_i(lambda)-1 be the number of parts of lambda of length v+1-i. Let x_{v+1}(lambda) = u+v+1-Sum_{i=1..v} x_i(lambda) so that (x_1(lambda),..., x_{v+1}(lambda)) is a composition of u+v+1 into v+1 parts. Let F(lambda) = Product_{i=1..v+1} Catalan(x_i(lambda)). We have a(n) = Sum_{k=0..n-2} Sum_{lambda in L(n-2k-2)} E(lambda) * F(lambda).
a(n) is the number of permutations of [n-1] that avoid the patterns 2341, 3241, 3412, and 3421.
a(n) is the number of permutations pi of [n-1] such that s(pi) avoids the patterns 231, 312, and 321, where s is West's stack-sorting map. (End)
a(n) is the number of permutations of length n avoiding the partially ordered pattern (POP) {4>1, 1>2} of length 4. That is, number of length n permutations having no subsequences of length 4 in which the fourth element is larger than the first element, which in turn is larger than the second element. - Sergey Kitaev, Dec 09 2020

Examples

			a(2)=2 because one diagonal may be placed 2 ways in the quadrilateral (placing none is not allowed).
Generated from Fibonacci polynomials (A011973) and odd self-convolutions of Catalan numbers (A039599):
a(0) = 1*   1 = 1.
a(1) = 1*   1 = 1.
a(2) = 1*   2 + 0*   1/3 = 2.
a(3) = 1*   5 + 1*   3/3 = 6.
a(4) = 1*  14 + 2*   9/3 +  0*  1/5 = 20.
a(5) = 1*  42 + 3*  28/3 +  1*  5/5 = 71.
a(6) = 1* 132 + 4*  90/3 +  3* 20/5 + 0* 1/7 = 264.
a(7) = 1* 429 + 5* 297/3 +  6* 75/5 + 1* 7/7 = 1015.
a(8) = 1*1430 + 6*1001/3 + 10*275/5 + 4*35/7 + 0*1/9 = 4002.
This process is equivalent to the formula:
a(n) = Sum_{k=0..floor((n-1)/2)} C(n-k-1,n-2k-1)*C(2n-2k,n-2k)/(n+1).
The odd self-convolutions of Catalan numbers begin:
A000108^1: {1, 1,  2,  5,  14,  42,  132, 329, 1430, ...}
A000108^3: {1, 3,  9, 28,  90, 297, 1001, ...}
A000108^5: {1, 5, 20, 75, 275, ...}
A000108^7: {1, 7, 35, ...}
		

Crossrefs

Cf. A000108, A003168, A269228. Row sums of A319120.

Programs

  • Maple
    Order := 20; solve(series((A-A^2-A^3)/(1-A^2),A)=x,A);
  • Mathematica
    a[n_] := (2^n*(2n-1)!!* HypergeometricPFQ[{1/2-n/2, 1/2-n/2, 1-n/2, -n/2}, {1/2-n, 1-n, -n}, -4])/(n! + n*n!); Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Jul 25 2011, after Paul D. Hanna *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,sum(k=0,n, binomial(k+m-1,k)*binomial(2*k+2*m,m)*x^(2*k+m+1)/(2*k+m+1))),n)}
    
  • PARI
    {a(n)=if(n==0,1,sum(k=0,(n-1)\2,binomial(n-k-1,k)*binomial(2*n-2*k,n))/(n+1))} \\ Paul D. Hanna, Dec 15 2004

Formula

G.f. satisfies: A(x) = x + A(x)^2/(1-A(x)^2); by Lagrange Inversion: A(x) = x + Sum_{n>=0} d^n/dx^n (x^2/(1-x^2))^(n+1)/(n+1)!, or: A(x) = Sum_{n>=0} Sum_{k>=n} C(k-1, k-n)*(2*k)!/(2*k-n+1)!*x^(2*k-n+1)/n!. - Paul D. Hanna, Mar 24 2004
a(n) = Sum_{k=0..floor((n-1)/2)} C(n-k-1, k)*C(2*n-2*k, n)/(n+1) for n > 0, with a(0)=1. - Paul D. Hanna, Dec 15 2004
D-finite with recurrence 5*n*(n+1)*(91*n^2 - 367*n + 348)*a(n) = 12*n*(182*n^3 - 825*n^2 + 1053*n - 328)*a(n-1) - 4*(91*n^4 - 549*n^3 + 971*n^2 - 453*n - 108)*a(n-2) + 6*(n-3)*(182*n^3 - 825*n^2 + 1092*n - 384)*a(n-3) - 4*(n-4)*(n-3)*(91*n^2 - 185*n + 72)*a(n-4). - Vaclav Kotesovec, Jul 29 2013
Lim_{n->infinity} a(n)^(1/n) = z, where z = 4.730576939379622... is the root of the equation 4 - 12*z + 4*z^2 - 24*z^3 + 5*z^4 = 0. - Vaclav Kotesovec, Jul 29 2013

Extensions

More terms from Paul D. Hanna, Dec 15 2004

A054514 Number of ways to place non-crossing diagonals in convex (n+4)-gon so as to create no triangles or quadrilaterals.

Original entry on oeis.org

1, 1, 1, 5, 10, 16, 45, 109, 222, 540, 1341, 3065, 7328, 18112, 43530, 105390, 260254, 639244, 1570257, 3893805, 9669236, 24014264, 59903650, 149806494, 374982790, 940835404, 2365679689, 5955973237, 15018854005, 37935575685, 95942896837, 242954350457, 616034170069, 1563810857705, 3974000543475
Offset: 1

Views

Author

Len Smiley, Apr 08 2000

Keywords

Examples

			a(4)=5 because the octagon has the null placement and four ways to place a single diagonal.
		

Crossrefs

Programs

  • Mathematica
    f[x_] = InverseSeries[Series[(y - y^2 - y^4)/(1 - y), {y, 0, 38}], x];
    CoefficientList[(f[x] - x)/x^4, x]
    (* Second program: *)
    a[n_] := Sum[Binomial[n-2j-1, n-3j-1] Binomial[n+3+j, n+2]/(n+3), {j, 0, (n-1)/3}]; Array[a, 35] (* Jean-François Alcover, Dec 08 2018, after David Callan *)
    Table[HypergeometricPFQ[{1/3 - n/3, 2/3 - n/3, 1 - n/3, 4 + n}, {2, 1/2 - n/2, 1 - n/2}, -27/4], {n, 1, 40}] (* Vaclav Kotesovec, Sep 16 2023 *)

Formula

a(n) = Sum_{j=0..(n-1)/3} binomial[n-2j-1, n-3j-1] binomial[n+3+j, n+2]/(n+3). This counts the polygon dissections above by number j of diagonals. - David Callan, Jul 15 2004

Extensions

More terms from Joerg Arndt, Jan 28 2014

A114496 a(n) = Sum of binomial(n,k)*binomial(2n+k,k) over all k.

Original entry on oeis.org

1, 4, 26, 190, 1462, 11584, 93536, 765314, 6323270, 52638760, 440815036, 3709445084, 31340292076, 265683004240, 2258793820988, 19251776923210, 164440378882630, 1407266585304760, 12063701803046300, 103571977632247076
Offset: 0

Views

Author

Eric Rowland, Dec 01 2005

Keywords

Comments

Modification of A001850 inspired by the Apéry numbers A005259.
From Paul Barry, Feb 17 2009: (Start)
Central coefficient of (1 + 4x + 5x^2 + 2x^3)^n. The coefficients are the 4th row of A029635.
The third row of A029635 corresponds to the central Delannoy numbers A001850. (End)

Crossrefs

Cf. A156886. - Paul Barry, Feb 17 2009

Programs

  • Mathematica
    Table[Sum[Binomial[n, k]*Binomial[2n+k, k], {k, 0, n}], {n,0,25}]
  • PARI
    a(n) = sum(k=0, n, 2^(n-k)*binomial(2*n,k)*binomial(n,k));
    vector(50, n, a(n-1)) \\ Altug Alkan, Oct 05 2015

Formula

a(n) = Sum_{k=0..n} (binomial(n,k)*binomial(2n+k,k)).
Recurrence: 20*n*(2*n - 1)*a(n) = (371*n^2 - 411*n + 120)*a(n-1) -2*(81*n^2 - 299*n + 278)*a(n-2) + 4*(n-2)*(2*n-5)*a(n-3). - Vaclav Kotesovec, Oct 19 2012
a(n) ~ sqrt(1734 + 442*sqrt(17))*((71 + 17*sqrt(17))/16)^n/(68*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 19 2012
From Peter Bala, Oct 05 2015: (Start)
a(n) = Sum_{i = 0..n} 2^(n-i)*binomial(2*n,i)*binomial(n,i).
4*n*(2*n - 1)*(17*n - 23)*a(n) = (1207*n^3 - 2840*n^2 + 1897*n - 360)*a(n-1) - 2*(n - 1)*(17*n - 6)*(2*n - 3)*a(n-2) with a(0) = 1 and a(1) = 4.
1 + x*exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 4*x^2 + 21*x^3 + 126*x^4 + ... is the o.g.f. for A003168. (End)

A243659 Number of Sylvester classes of 3-packed words of degree n.

Original entry on oeis.org

1, 1, 5, 34, 267, 2279, 20540, 192350, 1853255, 18252079, 182924645, 1859546968, 19127944500, 198725331588, 2082256791048, 21979169545670, 233495834018591, 2494624746580655, 26786319835972799, 288915128642169250, 3128814683222599331, 34007373443388857999
Offset: 0

Views

Author

N. J. A. Sloane, Jun 12 2014

Keywords

Comments

See Novelli-Thibon (2014) for precise definition.

Crossrefs

Column k=3 of A336573.

Programs

  • Maple
    a := proc(n) option remember; if n = 0 then 1 elif n = 1 then 1 else (4*(37604*n^5-158474*n^4+248391*n^3-178459*n^2+58042*n-6720)*a(n-1) - 3*(n-2)*(3*n-4)*(3*n-5)*(119*n^2-85*n+14)*a(n-2) )/ (12*n*(3*n-1)*(3*n+1)*(119*n^2-323*n+218)) fi; end:
    seq(a(n), n = 0..20); # Peter Bala, Sep 08 2024
  • Mathematica
    b[0] = 1; b[n_] := b[n] = 1/n Sum[Sum[2^(j-2i)(-1)^(i-j) Binomial[i, 3i-j] Binomial[i+j-1, i-1], {j, 0, 3i}] b[n-i], {i, 1, n}];
    a[n_] := b[n+1];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 27 2018, after Vladimir Kruchinin *)
  • Maxima
    a(n):=if n=0 then 1 else 1/n*sum(sum(2^(j-2*i)*(-1)^(i-j)*binomial(i,3*i-j)*binomial(i+j-1,i-1),j,0,3*i)*a(n-i),i,1,n); /* Vladimir Kruchinin, Apr 07 2017 */
    
  • PARI
    a(n) = if(n==0, 1, sum(i=1, n, a(n-i)*sum(j=0, 3*i, 2^(j-2*i)*(-1)^(i-j)*binomial(i,3*i-j)*binomial(i+j-1,i-1)))/n); \\ Seiichi Manyama, Jul 26 2020
    
  • PARI
    a(n) = my(A=1+x*O(x^n)); for(i=0, n, A=1-x*A^3*(1-2*A)); polcoeff(A, n); \\ Seiichi Manyama, Jul 26 2020
    
  • PARI
    a(n) = (-1)^n*sum(k=0, n, (-2)^k*binomial(n, k)*binomial(3*n+k+1, n)/(3*n+k+1)); \\ Seiichi Manyama, Jul 26 2020
    
  • PARI
    a(n) = (-1)^n*sum(k=0, n, (-2)^(n-k)*binomial(3*n+1, k)*binomial(4*n-k, n-k))/(3*n+1); \\ Seiichi Manyama, Jul 26 2020

Formula

Novelli-Thibon give an explicit formula in Eq. (182).
a(0) = 1 and a(n) = (1/n) * Sum_{i=1..n} ( Sum_{j=0..3*i} (2^(j-2*i)*(-1)^(i-j) * binomial(i,3*i-j)*binomial(i+j-1,i-1)) *a(n-i) ) for n > 0. - Vladimir Kruchinin, Apr 09 2017
From Seiichi Manyama, Jul 26 2020: (Start)
G.f. A(x) satisfies: A(x) = 1 - x * A(x)^3 * (1 - 2 * A(x)).
a(n) = (-1)^n * Sum_{k=0..n} (-2)^k * binomial(n,k) * binomial(3*n+k+1,n)/(3*n+k+1).
a(n) = ( (-1)^n / (3*n+1) ) * Sum_{k=0..n} (-2)^(n-k) * binomial(3*n+1,k) * binomial(4*n-k,n-k). (End)
a(n) ~ sqrt(24388 + 9221*sqrt(7)) * (316 + 119*sqrt(7))^(n - 1/2) / (sqrt(7*Pi) * n^(3/2) * 2^(n + 3/2) * 3^(3*n + 3/2)). - Vaclav Kotesovec, Jul 31 2021
a(n) = (1/n) * Sum_{k=0..n-1} binomial(n,k) * binomial(4*n-k,n-1-k) for n > 0. - Seiichi Manyama, Aug 08 2023
P-recursive: 12*n*(3*n-1)*(3*n+1)*(119*n^2-323*n+218)*a(n) = 4*(37604*n^5-158474*n^4+248391*n^3-178459*n^2+58042*n-6720)*a(n-1) - (3*n-4)*(3*n-5)*(3*n-6)*(119*n^2-85*n+14)*a(n-2) with a(0) = a(1) = 1. - Peter Bala, Sep 08 2024

Extensions

a(9)-a(21) from Lars Blomberg, Jul 12 2017
a(0)=1 inserted by Seiichi Manyama, Jul 26 2020

A336573 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = (-1)^n * Sum_{j=0..n} (-2)^j * binomial(n,j) * binomial(k*n+j+1,n)/(k*n+j+1).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 11, 8, 1, 1, 5, 21, 45, 16, 1, 1, 6, 34, 126, 197, 32, 1, 1, 7, 50, 267, 818, 903, 64, 1, 1, 8, 69, 484, 2279, 5594, 4279, 128, 1, 1, 9, 91, 793, 5105, 20540, 39693, 20793, 256, 1, 1, 10, 116, 1210, 9946, 56928, 192350, 289510, 103049, 512
Offset: 0

Views

Author

Seiichi Manyama, Jul 26 2020

Keywords

Comments

T(n,k) is the number of Sylvester classes of k-packed words of degree n.

Examples

			Square array begins:
   1,   1,   1,    1,    1,    1, ...
   1,   1,   1,    1,    1,    1, ...
   2,   3,   4,    5,    6,    7, ...
   4,  11,  21,   34,   50,   69, ...
   8,  45, 126,  267,  484,  793, ...
  16, 197, 818, 2279, 5105, 9946, ...
		

Crossrefs

Columns k = 0-5 are: A011782, A001003, A003168, A243659, A243667, A243668.
Main diagonal is A336495.

Programs

  • Maple
    T := (n,k) -> `if`(k=0, `if`(n=0, 1, 2^(n-1)), (-1)^n*(binomial(k*n+1, n)* hypergeom([-n, k*n+1], [(k-1)*n+2], 2)) / (k*n+1)):
    seq(lprint(seq(simplify(T(n, k)), k=0..9)), n=0..6); # Peter Luschny, Jul 26 2020
  • Mathematica
    T[n_, k_] := (-1)^n * Sum[(-2)^j * Binomial[n, j] * Binomial[k*n+j+1, n]/(k*n+j+1), {j, 0, n}]; Table[T[k, n-k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 01 2021 *)
  • PARI
    T(n, k) = (-1)^n*sum(j=0, n, (-2)^j*binomial(n, j)*binomial(k*n+j+1, n)/(k*n+j+1));
    
  • PARI
    T(n, k) = my(A=1+x*O(x^n)); for(i=0, n, A=1-x*A^k*(1-2*A)); polcoeff(A, n);
    
  • PARI
    T(n, k) = (-1)^n*sum(j=0, n, (-2)^(n-j)*binomial(k*n+1, j)*binomial((k+1)*n-j, n-j))/(k*n+1);

Formula

G.f. A_k(x) of column k satisfies A_k(x) = 1 - x * A_k(x)^k * (1 - 2 * A_k(x)).
T(n,k) = ( (-1)^n / (k*n+1) ) * Sum_{j=0..n} (-2)^(n-j) * binomial(k*n+1,j) * binomial((k+1)*n-j,n-j).
T(n,k) = (-1)^n*binomial(k*n+1, n)*hypergeom([-n, k*n+1], [(k-1)*n+2], 2)/(k*n+1) for k >= 1. - Peter Luschny, Jul 26 2020
T(n,k) = (1/n) * Sum_{j=0..n-1} binomial(n,j) * binomial((k+1)*n-j,n-1-j) for n > 0. - Seiichi Manyama, Aug 08 2023

A364985 E.g.f. satisfies A(x) = 1 + x*A(x)^3*exp(x*A(x)^2).

Original entry on oeis.org

1, 1, 8, 123, 2884, 91445, 3664926, 177796759, 10132646840, 663644108169, 49123993335130, 4055804550134051, 369544757016476196, 36834870020525413213, 3987179241476814768854, 465777171342934543710255, 58407238852473276959363056, 7825395596421876706944643985
Offset: 0

Views

Author

Seiichi Manyama, Aug 15 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, k^(n-k)*binomial(2*n+k+1, k)/((2*n+k+1)*(n-k)!));

Formula

a(n) = n! * Sum_{k=0..n} k^(n-k) * binomial(2*n+k+1,k)/( (2*n+k+1)*(n-k)! ).

A054515 Number of ways to place non-intersecting diagonals in convex (n+2)-gon so as to create no quadrilaterals.

Original entry on oeis.org

1, 1, 2, 6, 21, 78, 301, 1198, 4888, 20340, 85986, 368239, 1594183, 6965380, 30675399, 136026759, 606848034, 2721783023, 12265670909, 55511013680, 252193872912, 1149742659556, 5258257323304, 24117924005616, 110915268468358, 511334146237807, 2362650323603539
Offset: 0

Views

Author

Len Smiley, Apr 08 2000

Keywords

Comments

Number of tree interval posets of permutations with n+1 minimal elements. - Mathilde Bouvel, Oct 21 2021

Examples

			a(3) = 6 because the pentagon allows null placement and five ways to place two diagonals.
		

Crossrefs

Cf. A046736, A049124, A003168, A054514, A348479 (free interv. posets not necess. trees).

Programs

  • Maple
    read("transforms") :
    taylor( (1-2*y+y^2-y^3)/(1-y),y=0,50) ;
    gfun[seriestolist](%) ;
    REVERT(%) ; # R. J. Mathar, Nov 04 2021
  • Mathematica
    InverseSeries[Series[(y-2*y^2+y^3-y^4)/(1-y), {y, 0, 24}], x] (* then A(x)=[y(x)-x]/x *)
  • PARI
    my(N=28, x='x+O('x^N)); Vec(serreverse((x-2*x^2+x^3-x^4)/(1-x))) \\ Hugo Pfoertner, Jan 26 2024

Formula

REVERT transform of (1-2*x+x^2-x^3)/(1-x) [Smiley].
a(n-1) = (1/n) * [binomial(2n-2,n-1) + Sum_{i=1..(n-3)} Sum_{k=1..Min(i,(n-i-1)/2)} binomial(n+i-1,i)*binomial(i,k)*binomial(n-i-k-2,k-1) ] if n>1. Proved in M. Bouvel, L. Cioni, B. Izart (Theorem 21) with offset 1. - Mathilde Bouvel, Oct 21 2021
G.f. A(z) = Sum_{n>=0} a(n)*z^n satisfies A(z) = 1 + z*A^2 + z^3*A^4/(1-z*A). Proved in M. Bouvel, L. Cioni, B. Izart (Equation (6) page 17 with offset 1). - Mathilde Bouvel, Oct 21 2021
Asymptotic behavior of a(n-1) is c*n^(-3/2)*r^n with c approximately 0.0792 and r approximately 4.8920. Proved in M. Bouvel, L. Cioni, B. Izart (Theorem 22). - Mathilde Bouvel, Oct 21 2021
D-finite with recurrence 23 *n *(n-1) *(12869043*n-33144451) *(n+1) *a(n) -n *(n-1) *(1989552043*n^2-6117767430*n+2643232213) * a(n-1) +(n-1) *(3359030609*n^3-15361701516*n^2+20123332181*n-6949961920) *a(n-2) +(-3560897749*n^4+25182507306*n^3-62054513365*n^2 +60006265908*n-16495478980) *a(n-3) +3*(146027817*n^4-1247820696*n^3+3378236999*n^2-2363753280*n-1468123920)*a(n-4) -3*(335627*n+695280) *(3*n-13) *(3*n-11) *(n-4) *a(n-5)=0. - R. J. Mathar, Oct 28 2021
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(n+k,k) * binomial(2*n-k,n-3*k). - Seiichi Manyama, Jan 26 2024

Extensions

a(0) = 1 prefixed by R. J. Mathar, Nov 04 2021

A100327 Row sums of triangle A100326, in which row n equals the inverse binomial of column n of square array A100324.

Original entry on oeis.org

1, 2, 8, 42, 252, 1636, 11188, 79386, 579020, 4314300, 32697920, 251284292, 1953579240, 15336931928, 121416356108, 968187827834, 7769449728780, 62696580696172, 508451657412496, 4141712433518956, 33872033298518728, 278014853384816184, 2289376313410678312
Offset: 0

Views

Author

Paul D. Hanna, Nov 17 2004

Keywords

Comments

Self-convolution yields A100328, which equals column 1 of triangle A100326 (omitting leading zero).

Crossrefs

Programs

  • Magma
    A100327:= func< n | n eq 0 select 1 else (2/n)*(&+[Binomial(n, k)*Binomial(2*n+k, k-1): k in [1..n]]) >;
    [A100327(n): n in [0..30]]; // G. C. Greubel, Jan 30 2023
    
  • Maple
    A100327 := n -> simplify(2^n*binomial(3*n,2*n)*hypergeom([-1-2*n,-n], [-3*n], 1/2)/ (n+1/2)): seq(A100327(n), n=0..22); # Peter Luschny, Jun 10 2017
  • Mathematica
    Flatten[{1,Table[Sum[2*Binomial[n,k]*Binomial[2n+k,k-1]/n,{k,1,n}],{n,1,20}]}] (* Vaclav Kotesovec, Oct 17 2012 *)
  • PARI
    a(n)=if(n==0,1,sum(k=0,n,2*binomial(n,k)*binomial(2*n+k,k-1)/n))
    
  • PARI
    a(n)=polcoeff((1/x)*serreverse(x*(1-x+sqrt(1-4*x +x^2*O(x^n)))/(2+x)),n)
    for(n=0,25,print1(a(n),", ")) \\ Paul D. Hanna, Nov 22 2012
    
  • SageMath
    def A100327(n): return 2^n*binomial(3*n,2*n)*simplify(hypergeometric([-1-2*n,-n], [-3*n],1/2)/(n+1/2))
    [A100327(n) for n in range(31)] # G. C. Greubel, Jan 30 2023

Formula

G.f.: (1/x)*Series_Reversion( x*(1-x + sqrt(1 - 4*x)) / (2+x) ). - Paul D. Hanna, Nov 22 2012
G.f. A(x) = (1+G(x))/(1-G(x)), also A(x)^2 = (1+G(x))*G(x)/x, where G(x) = x*(1+G(x))/(1-G(x))^2 is the g.f. of A003169.
a(n) = 2*A003168(n) for n>0 with a(0)=1.
a(n) = Sum_{k=1..n} 2*binomial(n, k)*binomial(2n+k, k-1)/n for n>0 with a(0)=1.
Recurrence: 20*n*(2*n+1)*a(n) = (371*n^2 - 395*n + 96)*a(n-1) - 6*(27*n^2 - 103*n + 96)*a(n-2) + 4*(n-3)*(2*n-5)*a(n-3). - Vaclav Kotesovec, Oct 17 2012
a(n) ~ sqrt(4046 + 1122*sqrt(17))*((71 + 17*sqrt(17))/16)^n/(136*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 17 2012
a(n) = 2^n*binomial(3*n,2*n)*hypergeometric([-1-2*n,-n], [-3*n],1/2)/(n+1/2). - Peter Luschny, Jun 10 2017

A102537 Triangle T(n,k) read by rows: (1/n) * C(2n+k,k-1) * C(n,k); n, k >= 1.

Original entry on oeis.org

1, 1, 3, 1, 8, 12, 1, 15, 55, 55, 1, 24, 156, 364, 273, 1, 35, 350, 1400, 2380, 1428, 1, 48, 680, 4080, 11628, 15504, 7752, 1, 63, 1197, 9975, 41895, 92169, 100947, 43263, 1, 80, 1960, 21560, 123970, 396704, 708400, 657800, 246675, 1, 99, 3036, 42504
Offset: 1

Views

Author

Ralf Stephan, Jan 14 2005

Keywords

Comments

Number of dissections of a convex (2n+2)-gon by k-1 noncrossing diagonals into (2j+2)-gons, 1 <= j <= n-1.
Apparently, a signed, refined version of this array is given on page 65 of the Einziger link, related to the antipode of a Hopf algebra. - Tom Copeland, May 19 2015
The f-vectors of the simplicial noncrossing hypertree complexes of McCammond (p. 15). The reduced Euler characteristics are the signed Catalan numbers A000108. - Tom Copeland, May 19 2017
The rows seem to give (up to sign) the coefficients in the expansion of the integer-valued polynomial ((x+1)*(x+2)*...*(x+2n+1))*((x+n+2)*(x+n+3)*...*(x+2n)) / ((2n+1)!*(n)!) in the basis made of the binomial(x+i,i). - F. Chapoton, Nov 01 2022
Chapoton's observation above is correct: the precise expansion is ((x+1)*(x+2)*...*(x+2n+1))*((x+n+2)*(x+n+3)*...*(x+2n)) / ((2n+1)!*n!) = Sum_{k = 1..n} (-1)^(k+1)*T(n,n+1-k)*binomial(x+3*n+1-k, 3*n+1-k), as can be verified using the WZ algorithm. For example, n = 3 gives (x+1)*(x+2)*(x+3)*(x+4)*(x+5)*(x+6)*(x+7)*(x+5)(x+6)/(7!*3!) = 12*binomial(x+9,9) - 8*binomial(x+8,8) + binomial(x+7,7). - Peter Bala, Jun 25 2023

Examples

			Triangle begins
  1;
  1,  3;
  1,  8,   12;
  1, 15,   55,    55;
  1, 24,  156,   364,    273;
  1, 35,  350,  1400,   2380,   1428;
  1, 48,  680,  4080,  11628,  15504,   7752;
  1, 63, 1197,  9975,  41895,  92169, 100947,  43263;
  1, 80, 1960, 21560, 123970, 396704, 708400, 657800, 246675;
		

Crossrefs

Left-hand columns include A005563. Right-hand columns include essentially A001764 and A013698.
Row sums are in A003168.
Cf. A243662 for rows reversed.

Programs

  • Magma
    [[1/n * Binomial(2*n+k,k-1) * Binomial(n,k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, May 20 2015
  • Mathematica
    Table[1/n*Binomial[2 n + k, k - 1] Binomial[n, k], {n, 10}, {k, n}] // Flatten (* Michael De Vlieger, May 20 2017 *)
Showing 1-10 of 27 results. Next