A100326
Triangle, read by rows, where row n equals the inverse binomial of column n of square array A100324, which lists the self-convolutions of SHIFT(A003169).
Original entry on oeis.org
1, 1, 1, 3, 4, 1, 14, 20, 7, 1, 79, 116, 46, 10, 1, 494, 736, 311, 81, 13, 1, 3294, 4952, 2174, 626, 125, 16, 1, 22952, 34716, 15634, 4798, 1088, 178, 19, 1, 165127, 250868, 115048, 36896, 9094, 1724, 240, 22, 1, 1217270, 1855520, 862607, 285689, 74687, 15629, 2561, 311, 25, 1
Offset: 0
Rows begin:
1;
1, 1;
3, 4, 1;
14, 20, 7, 1;
79, 116, 46, 10, 1;
494, 736, 311, 81, 13, 1;
3294, 4952, 2174, 626, 125, 16, 1;
22952, 34716, 15634, 4798, 1088, 178, 19, 1;
165127, 250868, 115048, 36896, 9094, 1724, 240, 22, 1;
1217270, 1855520, 862607, 285689, 74687, 15629, 2561, 311, 25, 1;
...
First column forms A003169 shift right.
Binomial transform of row 3 forms column 3 of square A100324: BINOMIAL([14,20,7,1]) = [14,34,61,96,140,194,259,...].
Binomial transform of row 4 forms column 4 of square A100324: BINOMIAL([79,116,46,10,1]) = [79,195,357,575,860,1224,...].
-
import Data.List (transpose)
a100326 n k = a100326_tabl !! n !! k
a100326_row n = a100326_tabl !! n
a100326_tabl = [1] : f [[1]] where
f xss@(xs:_) = ys : f (ys : xss) where
ys = y : map (sum . zipWith (*) (zs ++ [y])) (map reverse zss)
y = sum $ zipWith (*) [1..] xs
zss@((:zs):) = transpose $ reverse xss
-- Reinhard Zumkeller, Nov 21 2015
-
A100326 := proc(n,k)
if k < 0 or k > n then
0 ;
elif n = 0 then
1 ;
elif k = 0 then
A003169(n)
else
add(procname(i+1,0)*procname(n-i-1,k-1),i=0..n-k) ;
end if;
end proc: # R. J. Mathar, Mar 15 2013
-
lim= 9; t[0, 0]=1; t[n_, 0]:= t[n, 0]= Sum[(k+1)*t[n-1,k], {k,0,n-1}]; t[n_, k_]:= t[n, k]= Sum[t[j+1, 0]*t[n-j-1, k-1], {j,0,n-k}]; Flatten[Table[t[n, k], {n,0,lim}, {k,0,n}]] (* Jean-François Alcover, Sep 20 2011 *)
-
T(n,k)=if(n
-
@CachedFunction
def T(n,k): # T = A100326
if (k<0 or k>n): return 0
elif (k==n): return 1
elif (k==0): return sum((j+1)*T(n-1,j) for j in range(n))
else: return sum(T(j+1,0)*T(n-j-1,k-1) for j in range(n-k+1))
flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 30 2023
A100324
Square array, read by antidiagonals, where rows are successive self-convolutions of the top row, which equals A003169 shifted one place right.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 1, 3, 7, 14, 1, 4, 12, 34, 79, 1, 5, 18, 61, 195, 494, 1, 6, 25, 96, 357, 1230, 3294, 1, 7, 33, 140, 575, 2277, 8246, 22952, 1, 8, 42, 194, 860, 3716, 15372, 57668, 165127, 1, 9, 52, 259, 1224, 5641, 25298, 108018, 415995, 1217270
Offset: 0
Array, A(n,k), begins as:
1, 1, 3, 14, 79, 494, 3294, ...;
1, 2, 7, 34, 195, 1230, 8246, ...;
1, 3, 12, 61, 357, 2277, 15372, ...;
1, 4, 18, 96, 575, 3716, 25298, ...;
1, 5, 25, 140, 860, 5641, 38775, ...;
1, 6, 33, 194, 1224, 8160, 56695, ...;
1, 7, 42, 259, 1680, 11396, 80108, ...;
Antidiagonal triangle, T(n,k), begins as:
1;
1, 1;
1, 2, 3;
1, 3, 7, 14;
1, 4, 12, 34, 79;
1, 5, 18, 61, 195, 494;
1, 6, 25, 96, 357, 1230, 3294;
1, 7, 33, 140, 575, 2277, 8246, 22952;
-
f[n_]:= f[n]= If[n<2, 1, If[n==2, 3, ((324*n^2-708*n+360)*f[n-1] - (371*n^2-1831*n+2250)*f[n-2] +(20*n^2-130*n+210)*f[n-3])/(16*n*(2*n -1)) ]]; (* f = A003169 *)
A[n_, k_]:= A[n, k]= If[n==0, f[k], If[k==0, 1, Sum[A[0,k-j]*A[n-1,j], {j,0,k}]]]; (* A = A100324 *)
T[n_, k_]:= A[n-k, k];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 31 2023 *)
-
{A(n,k)=if(k==0,1,if(n>0,sum(i=0,k,A(0,k-i)*A(n-1,i)), if(k==1,1,if(k==2,3,( (324*k^2-708*k+360)*A(0,k-1)-(371*k^2-1831*k+2250)*A(0,k-2)+(20*k^2-130*k+210)*A(0,k-3))/(16*k*(2*k-1)) )));)}
-
def f(n): # f = A003169
if (n<2): return 1
elif (n==2): return 3
else: return ((324*n^2-708*n+360)*f(n-1) - (371*n^2-1831*n+2250)*f(n-2) + (20*n^2-130*n+210)*f(n-3))/(16*n*(2*n-1))
@CachedFunction
def A(n, k): # A = 100324
if (n==0): return f(k)
elif (k==0): return 1
else: return sum( A(0,k-j)*A(n-1, j) for j in range(k+1) )
def T(n,k): return A(n-k,k)
flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 31 2023
A100325
Antidiagonal sums of square array A100324, which lists the self-convolutions of SHIFT(A003169).
Original entry on oeis.org
1, 2, 6, 25, 130, 774, 5009, 34231, 242988, 1773767, 13229272, 100362848, 772016385, 6007208105, 47198747457, 373929821070, 2983774582206, 23958802697161, 193448157014605, 1569625544848531, 12791865082236462
Offset: 0
-
f[n_]:= f[n]= If[n<2, 1, If[n==2, 3, ((324*n^2 -708*n +360)*f[n-1] -(371*n^2 -1831*n +2250)*f[n-2] + (20*n^2 -130*n +210)*f[n-3])/(16*n*(2*n-1)) ]]; (* f = A003169 *)
A[n_, k_]:= A[n, k]= If[n==0, f[k], If[k==0, 1, Sum[f[k-j]*A[n-1,j], {j,0,k}]]]; (* A = 100324 *)
a[n_]:= a[n]= Sum[A[n-k,k], {k,0,n}]; (* a = A100325 *)
Table[a[n], {n, 0, 40}] (* G. C. Greubel, Jan 31 2023 *)
-
{a(n)=local(A=1+x+x*O(x^n));if(n==0,1, for(i=1,n,A=1+x*A/(2-A)^2); sum(k=0,n,polcoeff(A^(n-k+1),k)))}
-
@CachedFunction
def f(n): # f = A003169
if (n<2): return 1
elif (n==2): return 3
else: return ((324*n^2-708*n+360)*f(n-1) - (371*n^2-1831*n+2250)*f(n-2) + (20*n^2-130*n+210)*f(n-3))/(16*n*(2*n-1))
@CachedFunction
def A(n, k): # A = 100324
if (n==0): return f(k)
elif (k==0): return 1
else: return sum( f(k-j)*A(n-1, j) for j in range(k+1) )
def T(n,k): return A(n-k, k)
def A100325(n): return sum( T(n,k) for k in range(n+1) )
[A100325(n) for n in range(41)] # G. C. Greubel, Jan 31 2023
A003168
Number of blobs with 2n+1 edges.
Original entry on oeis.org
1, 1, 4, 21, 126, 818, 5594, 39693, 289510, 2157150, 16348960, 125642146, 976789620, 7668465964, 60708178054, 484093913917, 3884724864390, 31348290348086, 254225828706248, 2070856216759478, 16936016649259364
Offset: 0
a(2)=4 because we may place exactly one diagonal in 3 ways (forming 2 quadrilaterals), or not place any (leaving 1 hexagon).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 0..1000 (terms 0..100 from T. D. Noe)
- Thomas H. Bertschinger, Joseph Slote, Olivia Claire Spencer, and Samuel Vinitsky, The Mathematics of Origami, Undergrad Thesis, Carleton College (2016).
- D. Birmajer, J. B. Gil, and M. D. Weiner, Colored partitions of a convex polygon by noncrossing diagonals, arXiv preprint arXiv:1503.05242 [math.CO], 2015.
- L. Carlitz, Enumeration of two-line arrays, Fib. Quart., Vol. 11 Number 2 (1973), 113-130.
- Frédéric Chapoton and Philippe Nadeau, Combinatorics of the categories of noncrossing partitions, Séminaire Lotharingien de Combinatoire 78B (2017), Article #37.
- Michael Drmota, Anna de Mier, and Marc Noy, Extremal statistics on non-crossing configurations, Discrete Math. 327 (2014), 103--117. MR3192420. See p. 116, B_b(z). - N. J. A. Sloane, May 18 2014
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 415
- Elżbieta Liszewska and Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
- Jean-Christophe Novelli and Jean-Yves Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014.
- Jean-Christophe Novelli and Jean-Yves Thibon, Noncommutative Symmetric Functions and Lagrange Inversion II: Noncrossing partitions and the Farahat-Higman algebra, arXiv:2106.08257 [math.CO], 2021-2022.
- Ronald C. Read, On the enumeration of a class of plane multigraphs, Aequat. Math. 31 (1986) No. 1, 47-63.
- L. Smiley, Even-gon reference
- Jun Yan, Results on pattern avoidance in parking functions, arXiv:2404.07958 [math.CO], 2024. See p. 30.
-
import Data.List (transpose)
a003168 0 = 1
a003168 n = sum (zipWith (*)
(tail $ a007318_tabl !! n)
((transpose $ take (3*n+1) a007318_tabl) !! (2*n+1)))
`div` fromIntegral n
-- Reinhard Zumkeller, Oct 27 2013
-
Order := 40; solve(series((A-2*A^3)/(1-A^2),A)=x,A);
A003168 := n -> `if`(n=0,1,A100327(n)/2): seq(A003168(n),n=0..20); # Peter Luschny, Jun 10 2017
-
a[0] = 1; a[n_] = (2^(-n-1)*(3n)!* Hypergeometric2F1[-1-2n, -2n, -3n, -1])/((2n+1)* n!*(2n)!); Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 25 2011, after Vladimir Kruchinin *)
-
a(n)=if(n<0,0,polcoeff(serreverse((x-2*x^3)/(1-x^2)+O(x^(2*n+2))),2*n+1))
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=(1+x*A)/(1-x*A)^2); sum(k=0,n,polcoeff(A^(n-k),k))} \\ Paul D. Hanna, Nov 17 2004
-
seq(n) = Vec( 1 + serreverse(x/((1+2*x)*(1+x)^2) + O(x*x^n)) ) \\ Andrew Howroyd, Mar 07 2023
A193091
Augmentation of the triangular array A158405. See Comments.
Original entry on oeis.org
1, 1, 3, 1, 6, 14, 1, 9, 37, 79, 1, 12, 69, 242, 494, 1, 15, 110, 516, 1658, 3294, 1, 18, 160, 928, 3870, 11764, 22952, 1, 21, 219, 1505, 7589, 29307, 85741, 165127, 1, 24, 287, 2274, 13355, 61332, 224357, 638250, 1217270, 1, 27, 364, 3262, 21789, 115003
Offset: 0
The triangle P, at A158405, is given by rows
1
1...3
1...3...5
1...3...5...7
1...3...5...7...9...
The augmentation of P is the array W starts with w(0,0)=1, by definition of W.
Successive polynomials (rows of W) arise from P as shown here:
...
1->x+3, so that W has (row 1)=(1,3);
...
x+3->(x^2+3x+5)+3*(x+3), so that W has (row 2)=(1,6,14);
...
x^2+6x+14->(x^3+3x^2+5x+7)+6(x^2+3x+5)+14(x+3), so that (row 3)=(1,9,37,79).
...
First 7 rows of W:
1
1 3
1 6 14
1 9 37 79
1 12 69 242 494
1 15 110 516 1658 3294
1 18 160 928 3870 11764 22952
-
p[n_, k_] := 2 k + 1
Table[p[n, k], {n, 0, 5}, {k, 0, n}] (* A158405 *)
m[n_] := Table[If[i <= j, p[n + 1 - i, j - i], 0], {i, n}, {j, n + 1}]
TableForm[m[4]]
w[0, 0] = 1; w[1, 0] = p[1, 0]; w[1, 1] = p[1, 1];
v[0] = w[0, 0]; v[1] = {w[1, 0], w[1, 1]};
v[n_] := v[n - 1].m[n]
TableForm[Table[v[n], {n, 0, 6}]] (* A193091 *)
Flatten[Table[v[n], {n, 0, 9}]]
A100327
Row sums of triangle A100326, in which row n equals the inverse binomial of column n of square array A100324.
Original entry on oeis.org
1, 2, 8, 42, 252, 1636, 11188, 79386, 579020, 4314300, 32697920, 251284292, 1953579240, 15336931928, 121416356108, 968187827834, 7769449728780, 62696580696172, 508451657412496, 4141712433518956, 33872033298518728, 278014853384816184, 2289376313410678312
Offset: 0
-
A100327:= func< n | n eq 0 select 1 else (2/n)*(&+[Binomial(n, k)*Binomial(2*n+k, k-1): k in [1..n]]) >;
[A100327(n): n in [0..30]]; // G. C. Greubel, Jan 30 2023
-
A100327 := n -> simplify(2^n*binomial(3*n,2*n)*hypergeom([-1-2*n,-n], [-3*n], 1/2)/ (n+1/2)): seq(A100327(n), n=0..22); # Peter Luschny, Jun 10 2017
-
Flatten[{1,Table[Sum[2*Binomial[n,k]*Binomial[2n+k,k-1]/n,{k,1,n}],{n,1,20}]}] (* Vaclav Kotesovec, Oct 17 2012 *)
-
a(n)=if(n==0,1,sum(k=0,n,2*binomial(n,k)*binomial(2*n+k,k-1)/n))
-
a(n)=polcoeff((1/x)*serreverse(x*(1-x+sqrt(1-4*x +x^2*O(x^n)))/(2+x)),n)
for(n=0,25,print1(a(n),", ")) \\ Paul D. Hanna, Nov 22 2012
-
def A100327(n): return 2^n*binomial(3*n,2*n)*simplify(hypergeometric([-1-2*n,-n], [-3*n],1/2)/(n+1/2))
[A100327(n) for n in range(31)] # G. C. Greubel, Jan 30 2023
A156894
a(n) = Sum_{k=0..n} binomial(n,k)*binomial(2*n+k-1,k).
Original entry on oeis.org
1, 3, 19, 138, 1059, 8378, 67582, 552576, 4563235, 37972290, 317894394, 2674398268, 22590697614, 191475925332, 1627653567916, 13870754053388, 118464647799075, 1013709715774130, 8689197042438274, 74594573994750972, 641252293546113434, 5519339268476249676, 47558930664216470628
Offset: 0
-
A156894:= func< n | (&+[ Binomial(n,k)*Binomial(2*n+k-1,k): k in [0..n]]) >;
[A156894(n): n in [0..30]]; // G. C. Greubel, Jan 06 2022
-
a := n -> hypergeom([-n, 2*n], [1], -1);
seq(round(evalf(a(n),32)), n=0..19); # Peter Luschny, Aug 02 2014
-
Table[Sum[Binomial[n,k]Binomial[2n+k-1,k],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Nov 12 2014 *)
-
a(n) = if (n < 1, 1, sum(k=0, n, binomial(n,k)*binomial(2*n+k-1,k)));
vector(50, n, a(n-1)) \\ Altug Alkan, Oct 05 2015
-
[round( hypergeometric([-n, 2*n], [1], -1) ) for n in (0..30)] # G. C. Greubel, Jan 06 2022
A286784
Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.
Original entry on oeis.org
1, 1, 1, 2, 4, 1, 5, 15, 9, 1, 14, 56, 56, 16, 1, 42, 210, 300, 150, 25, 1, 132, 792, 1485, 1100, 330, 36, 1, 429, 3003, 7007, 7007, 3185, 637, 49, 1, 1430, 11440, 32032, 40768, 25480, 7840, 1120, 64, 1, 4862, 43758, 143208, 222768, 179928, 77112, 17136, 1836, 81, 1, 16796, 167960, 629850, 1162800, 1162800, 651168, 203490, 34200, 2850, 100, 1
Offset: 0
A(x;t) = 1 + (1 + t)*x + (2 + 4*t + t^2)*x^2 + (5 + 15*t + 9*t^2 + t^3)*x^3 + ...
Triangle starts:
n\k [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
[0] 1;
[1] 1, 1;
[2] 2, 4, 1;
[3] 5, 15, 9, 1;
[4] 14, 56, 56, 16, 1;
[5] 42, 210, 300, 150, 25, 1;
[6] 132, 792, 1485, 1100, 330, 36, 1;
[7] 429, 3003, 7007, 7007, 3185, 637, 49, 1;
[8] 1430, 11440, 32032, 40768, 25480, 7840, 1120, 64, 1;
[9] 4862, 43758, 143208, 222768, 179928, 77112, 17136, 1836, 81, 1;
[10] ...
-
/* As triangle */ [[(Binomial(2*n, n+m)*Binomial(n+1, m))/(n+1): m in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 23 2018
-
Flatten@Table[Binomial[2 n, n + m] Binomial[n + 1, m] / (n + 1), {n, 0, 10}, {m, 0, n}] (* Vincenzo Librandi, Sep 23 2018 *)
-
T(n,m):=(binomial(2*n,n+m)*binomial(n+1,m))/(n+1); /* Vladimir Kruchinin, Sep 23 2018 */
-
A286784_ser(N,t='t) = my(x='x+O('x^N)); serreverse(Ser(x*(1-x)^2/(1+(t-1)*x)))/x;
concat(apply(p->Vecrev(p), Vec(A286784_ser(12))))
\\ test: y=A286784_ser(50); y*(1-x*y)^2 == 1 + ('t-1)*x*y
A365764
Expansion of (1/x) * Series_Reversion( x*(1-x)^3/(1+x) ).
Original entry on oeis.org
1, 4, 25, 188, 1563, 13840, 127972, 1221260, 11938471, 118936100, 1203155633, 12325599632, 127611357300, 1333153669632, 14035828918560, 148773617605036, 1586305110768863, 17002975960876300, 183102052226442475, 1980078493171083292, 21493846031259095539
Offset: 0
-
CoefficientList[(1/x) *InverseSeries[Series[x*(1-x)^3/(1+x),{x,0,21}]],x] (* Stefano Spezia, May 04 2025 *)
-
a(n) = sum(k=0, n, binomial(n+1, k)*binomial(4*n-k+2, n-k))/(n+1);
A208904
Triangle of coefficients of polynomials v(n,x) jointly generated with A208660; see the Formula section.
Original entry on oeis.org
1, 3, 1, 5, 6, 1, 7, 19, 9, 1, 9, 44, 42, 12, 1, 11, 85, 138, 74, 15, 1, 13, 146, 363, 316, 115, 18, 1, 15, 231, 819, 1059, 605, 165, 21, 1, 17, 344, 1652, 2984, 2470, 1032, 224, 24, 1, 19, 489, 3060, 7380, 8378, 4974, 1624, 292, 27, 1, 21, 670, 5301, 16488
Offset: 1
First five rows:
1
3...1
5...6....1
7...19...9....1
9...44...42...12...1
First five polynomials v(n,x):
1
3 + x
5 + 6x + x^2
7 + 19x + 9x^2 + x^3
9 + 44x + 42x^2 + 12x^3 + x^4
From _Peter Bala_, Jul 21 2014: (Start)
With the arrays M(k) as defined in the Comments section, the infinite product M(0*)M(1)*M(2)*... begins
/1 \/1 \/1 \ /1 \
|3 1 ||0 1 ||0 1 | |3 1 |
|5 3 1 ||0 3 1 ||0 0 1 |... = |5 6 1 |
|7 5 3 1 ||0 5 3 1 ||0 0 3 1 | |7 19 9 1 |
|9 7 5 3 1||0 7 5 3 1||0 0 5 3 1| |9 44 42 12 1 |
|... ||... ||... | |...
(End)
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];
v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208660 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208904 *)
Showing 1-10 of 19 results.
Comments