cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A003168 Number of blobs with 2n+1 edges.

Original entry on oeis.org

1, 1, 4, 21, 126, 818, 5594, 39693, 289510, 2157150, 16348960, 125642146, 976789620, 7668465964, 60708178054, 484093913917, 3884724864390, 31348290348086, 254225828706248, 2070856216759478, 16936016649259364
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of ways to dissect a convex (2n+2)-gon with non-crossing diagonals so that no (2m+1)-gons (m>0) appear. - Len Smiley
a(n) is the number of plane trees with 2n+1 leaves and all non-leaves having an odd number > 1 of children. - Jordan Tirrell, Jun 09 2017
a(n) is the number of noncrossing cacti with n+1 nodes. See A361242. - Andrew Howroyd, Mar 07 2023

Examples

			a(2)=4 because we may place exactly one diagonal in 3 ways (forming 2 quadrilaterals), or not place any (leaving 1 hexagon).
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A049124 (no 2m-gons).
Row sums of A102537, A243662. Column 2 of A336573.

Programs

  • Haskell
    import Data.List (transpose)
    a003168 0 = 1
    a003168 n = sum (zipWith (*)
       (tail $ a007318_tabl !! n)
       ((transpose $ take (3*n+1) a007318_tabl) !! (2*n+1)))
       `div` fromIntegral n
    -- Reinhard Zumkeller, Oct 27 2013
  • Maple
    Order := 40; solve(series((A-2*A^3)/(1-A^2),A)=x,A);
    A003168 := n -> `if`(n=0,1,A100327(n)/2): seq(A003168(n),n=0..20); # Peter Luschny, Jun 10 2017
  • Mathematica
    a[0] = 1; a[n_] = (2^(-n-1)*(3n)!* Hypergeometric2F1[-1-2n, -2n, -3n, -1])/((2n+1)* n!*(2n)!); Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 25 2011, after Vladimir Kruchinin *)
  • PARI
    a(n)=if(n<0,0,polcoeff(serreverse((x-2*x^3)/(1-x^2)+O(x^(2*n+2))),2*n+1))
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=(1+x*A)/(1-x*A)^2); sum(k=0,n,polcoeff(A^(n-k),k))} \\ Paul D. Hanna, Nov 17 2004
    
  • PARI
    seq(n) = Vec( 1 + serreverse(x/((1+2*x)*(1+x)^2) + O(x*x^n)) ) \\ Andrew Howroyd, Mar 07 2023
    

Formula

a(n) = Sum_{k=1..n} binomial(n, k)*binomial(2*n+k, k-1)/n.
G.f.: A(x) = Sum_{n>=0} a(n)*x^(2*n+1) satisfies (A-2*A^3)/(1-A^2)=x. - Len Smiley.
D-finite with recurrence 4*n*(2*n + 1)*(17*n - 22)*a(n) = (1207*n^3 - 2769*n^2 + 1850*n - 360)*a(n - 1) - 2*(17*n - 5)*(n - 2)*(2*n - 3)*a(n - 2). - Vladeta Jovovic, Jul 16 2004
G.f.: A(x) = 1/(1-G003169(x)) where G003169(x) is the g.f. of A003169. - Paul D. Hanna, Nov 17 2004
a(n) = JacobiP(n-1,1,n+1,3)/n for n > 0. - Mark van Hoeij, Jun 02 2010
a(n) = (1/(2*n+1))*Sum_{j=0..n} (-1)^j*2^(n-j)*binomial(2*n+1,j)*binomial(3*n-j,2*n). - Vladimir Kruchinin, Dec 24 2010
From Gary W. Adamson, Jul 08 2011: (Start)
a(n) = upper left term in M^n, M = the production matrix:
1, 1
3, 3, 1
5, 5, 3, 1
7, 7, 5, 3, 1
9, 9, 7, 5, 3, 1
... (End)
a(n) ~ sqrt(14+66/sqrt(17)) * (71+17*sqrt(17))^n / (sqrt(Pi) * n^(3/2) * 2^(4*n+4)). - Vaclav Kotesovec, Jul 01 2015
From Peter Bala, Oct 05 2015: (Start)
a(n) = (1/n) * Sum_{i = 0..n} 2^(n-i-1)*binomial(2*n,i)* binomial(n,i+1).
O.g.f. = 1 + series reversion( x/((1 + 2*x)*(1 + x)^2) ).
Logarithmically differentiating the modified g.f. 1 + 4*x + 21*x^2 + 126*x^3 + 818*x^4 + ... gives the o.g.f. for A114496, apart from the initial term. (End)
G.f.: A(x) satisfies A = 1 + x*A^3/(1-x*A^2). - Jordan Tirrell, Jun 09 2017
a(n) = A100327(n)/2 for n>=1. - Peter Luschny, Jun 10 2017

A100326 Triangle, read by rows, where row n equals the inverse binomial of column n of square array A100324, which lists the self-convolutions of SHIFT(A003169).

Original entry on oeis.org

1, 1, 1, 3, 4, 1, 14, 20, 7, 1, 79, 116, 46, 10, 1, 494, 736, 311, 81, 13, 1, 3294, 4952, 2174, 626, 125, 16, 1, 22952, 34716, 15634, 4798, 1088, 178, 19, 1, 165127, 250868, 115048, 36896, 9094, 1724, 240, 22, 1, 1217270, 1855520, 862607, 285689, 74687, 15629, 2561, 311, 25, 1
Offset: 0

Views

Author

Paul D. Hanna, Nov 17 2004

Keywords

Comments

The leftmost column equals A003169 shift one place right.
Each column k > 0 equals the convolution of the prior column and A003169.
Row sums form A100327.
The elements of the matrix inverse are T^(-1)(n,k) = (-1)^(n+k) * A158687(n,k). - R. J. Mathar, Mar 15 2013

Examples

			Rows begin:
        1;
        1,       1;
        3,       4,      1;
       14,      20,      7,      1;
       79,     116,     46,     10,     1;
      494,     736,    311,     81,    13,     1;
     3294,    4952,   2174,    626,   125,    16,    1;
    22952,   34716,  15634,   4798,  1088,   178,   19,   1;
   165127,  250868, 115048,  36896,  9094,  1724,  240,  22,  1;
  1217270, 1855520, 862607, 285689, 74687, 15629, 2561, 311, 25,  1;
  ...
First column forms A003169 shift right.
Binomial transform of row 3 forms column 3 of square A100324: BINOMIAL([14,20,7,1]) = [14,34,61,96,140,194,259,...].
Binomial transform of row 4 forms column 4 of square A100324: BINOMIAL([79,116,46,10,1]) = [79,195,357,575,860,1224,...].
		

Crossrefs

Cf. A003169, A100324, A100327 (row sums), A158687, A264717 (central terms).

Programs

  • Haskell
    import Data.List (transpose)
    a100326 n k = a100326_tabl !! n !! k
    a100326_row n = a100326_tabl !! n
    a100326_tabl = [1] : f [[1]] where
    f xss@(xs:_) = ys : f (ys : xss) where
    ys = y : map (sum . zipWith (*) (zs ++ [y])) (map reverse zss)
    y = sum $ zipWith (*) [1..] xs
    zss@((:zs):) = transpose $ reverse xss
    -- Reinhard Zumkeller, Nov 21 2015
    
  • Maple
    A100326 := proc(n,k)
        if k < 0 or k > n then
            0 ;
        elif n = 0 then
            1 ;
        elif k = 0 then
            A003169(n)
        else
            add(procname(i+1,0)*procname(n-i-1,k-1),i=0..n-k) ;
        end if;
    end proc: # R. J. Mathar, Mar 15 2013
  • Mathematica
    lim= 9; t[0, 0]=1; t[n_, 0]:= t[n, 0]= Sum[(k+1)*t[n-1,k], {k,0,n-1}]; t[n_, k_]:= t[n, k]= Sum[t[j+1, 0]*t[n-j-1, k-1], {j,0,n-k}]; Flatten[Table[t[n, k], {n,0,lim}, {k,0,n}]] (* Jean-François Alcover, Sep 20 2011 *)
  • PARI
    T(n,k)=if(n
    				
  • SageMath
    @CachedFunction
    def T(n,k): # T = A100326
        if (k<0 or k>n): return 0
        elif (k==n): return 1
        elif (k==0): return sum((j+1)*T(n-1,j) for j in range(n))
        else: return sum(T(j+1,0)*T(n-j-1,k-1) for j in range(n-k+1))
    flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 30 2023

Formula

T(n, 0) = A003169(n) = Sum_{k=0..n-1} (k+1)*T(n-1, k) for n>0, with T(0, 0)=1.
T(n, k) = Sum_{i=0..n-k} T(i+1, 0)*T(n-i-1, k-1) for n > 0.
T(2*n, n) = A264717(n).
Sum_{k=0..n} T(n, k) = A100327(n).
G.f.: A(x, y) = (1 + G(x))/(1 - y*G(x)), where G(x) is the g.f. of A003169.
From G. C. Greubel, Jan 30 2023: (Start)
Sum_{k=0..n} (-1)^k*T(n, k) = A000007(n).
Sum_{k=0..n-1} (-1)^k*T(n, k) = A033999(n). (End)

A219538 G.f. satisfies A(x) = 1 + x*A(x)^2*(1 + A(x))^2/2.

Original entry on oeis.org

1, 2, 12, 98, 924, 9468, 102432, 1151410, 13315692, 157406876, 1893480264, 23103024084, 285233168760, 3556744196000, 44730062281800, 566683825859730, 7225564521956940, 92653105887920556, 1194068058333608136, 15457771628663418748, 200916876963088849992
Offset: 0

Views

Author

Paul D. Hanna, Nov 22 2012

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 12*x^2 + 98*x^3 + 924*x^4 + 9468*x^5 + 102432*x^6 +...
Related expansions:
A(x)^2 = 1 + 4*x + 28*x^2 + 244*x^3 + 2384*x^4 + 24984*x^5 +...
A(2)^3 = 1 + 6*x + 48*x^2 + 446*x^3 + 4524*x^4 + 48588*x^5 +...
A(2)^4 = 1 + 8*x + 72*x^2 + 712*x^3 + 7504*x^4 + 82704*x^5 +...
where A(x) = 1 + x*(A(x)^2 + 2*A(x)^3 + A(x)^4)/2.
The g.f. satisfies A(x) = F(x*A(x)^2) and F(x) = A(x/F(x)^2) where
F(x) = 1 + 2*x + 4*x^2 + 10*x^3 + 28*x^4 + 84*x^5 + 264*x^6 +...+ 2*A000108(n)*x^n +...
The g.f. satisfies A(x) = G(x*A(x)) and G(x) = A(x/G(x)) where
G(x) = 1 + 2*x + 8*x^2 + 42*x^3 + 252*x^4 + 1636*x^5 +...+ A100327(n)*x^n +...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Sqrt[1/x*InverseSeries[Series[x^3/(1-x-Sqrt[1-4*x])^2, {x, 0, 20}], x]],x] (* Vaclav Kotesovec, Dec 28 2013 *)
  • PARI
    /* Formula A(x) = 1 + x*A(x)^2*(1 + A(x))^2/2: */
    {a(n)=local(A=1);for(i=1,n,A=1+x*A^2*(1+A +x*O(x^n))^2/2);polcoeff(A,n)}
    for(n=0,25,print1(a(n),", "))
    
  • PARI
    /* Formula using Series Reversion involving Catalan numbers: */
    {a(n)=local(A=1);A=(1-x-sqrt(1-4*x +x^3*O(x^n)))/x; polcoeff(sqrt(1/x*serreverse(x/A^2)), n)}
    for(n=0,25,print1(a(n),", "))

Formula

Let F(x) = (1-x - sqrt(1 - 4*x)) / x, then g.f. A(x) satisfies:
(1) A(x) = sqrt( (1/x)*Series_Reversion(x/F(x)^2) ),
(2) A(x) = F(x*A(x)^2) and F(x) = A(x/F(x)^2),
where F(x) = 2*C(x) - 1 such that C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).
Let G(x) be the g.f. of A100327, then g.f. A(x) satisfies:
(3) A(x) = (1/x)*Series_Reversion(x/G(x)),
(4) A(x) = G(x*A(x)) and G(x) = A(x/G(x)).
Recurrence: 3*n*(3*n-1)*(3*n+1)*(11*n-14)*a(n) = 3*(2*n-1)*(693*n^3 - 1575*n^2 + 1026*n - 176)*a(n-1) + 2*(n-2)*(2*n-3)*(2*n-1)*(11*n-3)*a(n-2). - Vaclav Kotesovec, Dec 28 2013
a(n) ~ sqrt(242+66*sqrt(33)) * (7+11/9*sqrt(33))^n / (66*sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Dec 28 2013
a(n) = (1/n) * Sum_{k=0..floor((n-1)/2)} 2^(n-2*k) * binomial(n,k) * binomial(3*n-k,n-1-2*k) for n > 0. - Seiichi Manyama, Apr 02 2024

A100328 Column 1 of triangle A100326, in which row n equals the inverse binomial of column n of square array A100324, with leading zero omitted.

Original entry on oeis.org

1, 4, 20, 116, 736, 4952, 34716, 250868, 1855520, 13979192, 106901032, 827644424, 6474611984, 51100656544, 406400018092, 3253636464756, 26201323746880, 212093247874904, 1724793778005528, 14084738953391768, 115447965121881856
Offset: 0

Views

Author

Paul D. Hanna, Nov 17 2004

Keywords

Comments

Self-convolution of A100327, which equals the row sums of triangle A100326.

Crossrefs

Programs

  • PARI
    {a(n)=if(n==0,1,sum(j=0,n, if(j==0,1,sum(k=0,j,2*binomial(j,k)*binomial(2*j+k,k-1)/j))* if(n-j==0,1,sum(k=0,n-j,2*binomial(n-j,k)*binomial(2*n-2*j+k,k-1)/(n-j)))))}

Formula

G.f.: (1+G003169(x))*G003169(x)/x, where G003169(x) is the g.f. of A003169.
Recurrence: 4*(n+1)*(2*n+1)*(17*n^2 - 28*n + 12)*a(n) = (1207*n^4 - 1988*n^3 + 1013*n^2 - 124*n - 12)*a(n-1) - 2*(n-2)*(2*n-3)*(17*n^2 + 6*n + 1)*a(n-2). - Vaclav Kotesovec, Jul 05 2014
a(n) ~ sqrt(95+393/sqrt(17)) * ((71+17*sqrt(17))/16)^n / (4*sqrt(2*Pi) * n^(3/2)). - Vaclav Kotesovec, Jul 05 2014
From Peter Bala, Sep 08 2024: (Start)
a(n) = (2/n) * Sum_{k = 0..n} binomial(n+1, n-k-1)*binomial(2*n, k)*2^(n-k) for n >= 1.
a(n) = 4*Jacobi_P(n-1, 2, n+1, 3)/n for n >= 1. Cf. A003168. (End)

A371655 G.f. satisfies A(x) = 1 + x * A(x) * (1 + A(x))^2.

Original entry on oeis.org

1, 4, 32, 336, 4032, 52352, 716032, 10161408, 148229120, 2208921600, 33482670080, 514630230016, 8001860567040, 125640146354176, 1989285578473472, 31725578742464512, 509178657425326080, 8217766225008656384, 133287551280741351424, 2171450128344786403328
Offset: 0

Views

Author

Seiichi Manyama, Apr 01 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, (n-1)\2, 4^(n-k)*binomial(n, k)*binomial(2*n-k, n-1-2*k))/n);

Formula

a(n) = (1/n) * Sum_{k=0..floor((n-1)/2)} 4^(n-k) * binomial(n,k) * binomial(2*n-k,n-1-2*k) for n > 0.
a(n) = 2^n * A100327(n). - Seiichi Manyama, Dec 26 2024

A371669 G.f. satisfies A(x) = 1 + x * A(x)^3 * (1 + A(x))^2/2.

Original entry on oeis.org

1, 2, 16, 178, 2300, 32380, 481932, 7458370, 118809868, 1935217180, 32083715344, 539615356884, 9184652815816, 157908543871712, 2738272978314500, 47837620415491554, 841151610003847564, 14874918252400486060, 264381545177102073600, 4720297172922980155740
Offset: 0

Views

Author

Seiichi Manyama, Apr 02 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, (n-1)\2, 2^(n-2*k)*binomial(n, k)*binomial(4*n-k, n-1-2*k))/n);

Formula

a(n) = (1/n) * Sum_{k=0..floor((n-1)/2)} 2^(n-2*k) * binomial(n,k) * binomial(4*n-k,n-1-2*k) for n > 0.
Showing 1-6 of 6 results.