A100326
Triangle, read by rows, where row n equals the inverse binomial of column n of square array A100324, which lists the self-convolutions of SHIFT(A003169).
Original entry on oeis.org
1, 1, 1, 3, 4, 1, 14, 20, 7, 1, 79, 116, 46, 10, 1, 494, 736, 311, 81, 13, 1, 3294, 4952, 2174, 626, 125, 16, 1, 22952, 34716, 15634, 4798, 1088, 178, 19, 1, 165127, 250868, 115048, 36896, 9094, 1724, 240, 22, 1, 1217270, 1855520, 862607, 285689, 74687, 15629, 2561, 311, 25, 1
Offset: 0
Rows begin:
1;
1, 1;
3, 4, 1;
14, 20, 7, 1;
79, 116, 46, 10, 1;
494, 736, 311, 81, 13, 1;
3294, 4952, 2174, 626, 125, 16, 1;
22952, 34716, 15634, 4798, 1088, 178, 19, 1;
165127, 250868, 115048, 36896, 9094, 1724, 240, 22, 1;
1217270, 1855520, 862607, 285689, 74687, 15629, 2561, 311, 25, 1;
...
First column forms A003169 shift right.
Binomial transform of row 3 forms column 3 of square A100324: BINOMIAL([14,20,7,1]) = [14,34,61,96,140,194,259,...].
Binomial transform of row 4 forms column 4 of square A100324: BINOMIAL([79,116,46,10,1]) = [79,195,357,575,860,1224,...].
-
import Data.List (transpose)
a100326 n k = a100326_tabl !! n !! k
a100326_row n = a100326_tabl !! n
a100326_tabl = [1] : f [[1]] where
f xss@(xs:_) = ys : f (ys : xss) where
ys = y : map (sum . zipWith (*) (zs ++ [y])) (map reverse zss)
y = sum $ zipWith (*) [1..] xs
zss@((:zs):) = transpose $ reverse xss
-- Reinhard Zumkeller, Nov 21 2015
-
A100326 := proc(n,k)
if k < 0 or k > n then
0 ;
elif n = 0 then
1 ;
elif k = 0 then
A003169(n)
else
add(procname(i+1,0)*procname(n-i-1,k-1),i=0..n-k) ;
end if;
end proc: # R. J. Mathar, Mar 15 2013
-
lim= 9; t[0, 0]=1; t[n_, 0]:= t[n, 0]= Sum[(k+1)*t[n-1,k], {k,0,n-1}]; t[n_, k_]:= t[n, k]= Sum[t[j+1, 0]*t[n-j-1, k-1], {j,0,n-k}]; Flatten[Table[t[n, k], {n,0,lim}, {k,0,n}]] (* Jean-François Alcover, Sep 20 2011 *)
-
T(n,k)=if(n
-
@CachedFunction
def T(n,k): # T = A100326
if (k<0 or k>n): return 0
elif (k==n): return 1
elif (k==0): return sum((j+1)*T(n-1,j) for j in range(n))
else: return sum(T(j+1,0)*T(n-j-1,k-1) for j in range(n-k+1))
flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 30 2023
A100327
Row sums of triangle A100326, in which row n equals the inverse binomial of column n of square array A100324.
Original entry on oeis.org
1, 2, 8, 42, 252, 1636, 11188, 79386, 579020, 4314300, 32697920, 251284292, 1953579240, 15336931928, 121416356108, 968187827834, 7769449728780, 62696580696172, 508451657412496, 4141712433518956, 33872033298518728, 278014853384816184, 2289376313410678312
Offset: 0
-
A100327:= func< n | n eq 0 select 1 else (2/n)*(&+[Binomial(n, k)*Binomial(2*n+k, k-1): k in [1..n]]) >;
[A100327(n): n in [0..30]]; // G. C. Greubel, Jan 30 2023
-
A100327 := n -> simplify(2^n*binomial(3*n,2*n)*hypergeom([-1-2*n,-n], [-3*n], 1/2)/ (n+1/2)): seq(A100327(n), n=0..22); # Peter Luschny, Jun 10 2017
-
Flatten[{1,Table[Sum[2*Binomial[n,k]*Binomial[2n+k,k-1]/n,{k,1,n}],{n,1,20}]}] (* Vaclav Kotesovec, Oct 17 2012 *)
-
a(n)=if(n==0,1,sum(k=0,n,2*binomial(n,k)*binomial(2*n+k,k-1)/n))
-
a(n)=polcoeff((1/x)*serreverse(x*(1-x+sqrt(1-4*x +x^2*O(x^n)))/(2+x)),n)
for(n=0,25,print1(a(n),", ")) \\ Paul D. Hanna, Nov 22 2012
-
def A100327(n): return 2^n*binomial(3*n,2*n)*simplify(hypergeometric([-1-2*n,-n], [-3*n],1/2)/(n+1/2))
[A100327(n) for n in range(31)] # G. C. Greubel, Jan 30 2023
A100325
Antidiagonal sums of square array A100324, which lists the self-convolutions of SHIFT(A003169).
Original entry on oeis.org
1, 2, 6, 25, 130, 774, 5009, 34231, 242988, 1773767, 13229272, 100362848, 772016385, 6007208105, 47198747457, 373929821070, 2983774582206, 23958802697161, 193448157014605, 1569625544848531, 12791865082236462
Offset: 0
-
f[n_]:= f[n]= If[n<2, 1, If[n==2, 3, ((324*n^2 -708*n +360)*f[n-1] -(371*n^2 -1831*n +2250)*f[n-2] + (20*n^2 -130*n +210)*f[n-3])/(16*n*(2*n-1)) ]]; (* f = A003169 *)
A[n_, k_]:= A[n, k]= If[n==0, f[k], If[k==0, 1, Sum[f[k-j]*A[n-1,j], {j,0,k}]]]; (* A = 100324 *)
a[n_]:= a[n]= Sum[A[n-k,k], {k,0,n}]; (* a = A100325 *)
Table[a[n], {n, 0, 40}] (* G. C. Greubel, Jan 31 2023 *)
-
{a(n)=local(A=1+x+x*O(x^n));if(n==0,1, for(i=1,n,A=1+x*A/(2-A)^2); sum(k=0,n,polcoeff(A^(n-k+1),k)))}
-
@CachedFunction
def f(n): # f = A003169
if (n<2): return 1
elif (n==2): return 3
else: return ((324*n^2-708*n+360)*f(n-1) - (371*n^2-1831*n+2250)*f(n-2) + (20*n^2-130*n+210)*f(n-3))/(16*n*(2*n-1))
@CachedFunction
def A(n, k): # A = 100324
if (n==0): return f(k)
elif (k==0): return 1
else: return sum( f(k-j)*A(n-1, j) for j in range(k+1) )
def T(n,k): return A(n-k, k)
def A100325(n): return sum( T(n,k) for k in range(n+1) )
[A100325(n) for n in range(41)] # G. C. Greubel, Jan 31 2023
A100328
Column 1 of triangle A100326, in which row n equals the inverse binomial of column n of square array A100324, with leading zero omitted.
Original entry on oeis.org
1, 4, 20, 116, 736, 4952, 34716, 250868, 1855520, 13979192, 106901032, 827644424, 6474611984, 51100656544, 406400018092, 3253636464756, 26201323746880, 212093247874904, 1724793778005528, 14084738953391768, 115447965121881856
Offset: 0
-
{a(n)=if(n==0,1,sum(j=0,n, if(j==0,1,sum(k=0,j,2*binomial(j,k)*binomial(2*j+k,k-1)/j))* if(n-j==0,1,sum(k=0,n-j,2*binomial(n-j,k)*binomial(2*n-2*j+k,k-1)/(n-j)))))}
A003169
Number of 2-line arrays; or number of P-graphs with 2n edges.
Original entry on oeis.org
1, 3, 14, 79, 494, 3294, 22952, 165127, 1217270, 9146746, 69799476, 539464358, 4214095612, 33218794236, 263908187100, 2110912146295, 16985386737830, 137394914285538, 1116622717709012, 9113225693455362, 74659999210200292
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- M. Bicknell and V. E. Hoggatt, Jr., Sequences of matrix inverses from Pascal, Catalan and related convolution arrays, Fib. Quart., 14 (1976), 224-232.
- L. Carlitz, Enumeration of two-line arrays, Fib. Quart., Vol. 11 Number 2 (1973), 113-130.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 416
- R. C. Read, On the enumeration of a class of plane multigraphs, Aequat. Math. 31 (1986) no 1, 47-63.
- Jun Yan, Lattice paths enumerations weighted by ascent lengths, arXiv:2501.01152 [math.CO], 2025. See p. 8.
- Anssi Yli-Jyrä and Carlos Gómez-Rodríguez, Generic Axiomatization of Families of Noncrossing Graphs in Dependency Parsing, arXiv:1706.03357 [cs.CL], 2017.
-
a003169 = flip a100326 0 -- Reinhard Zumkeller, Nov 21 2015
-
a[0]:=0:a[1]:=1:a[2]:=3:for n from 3 to 30 do a[n]:=((324*n^2-708*n+360)*a[n-1] -(371*n^2-1831*n+2250)*a[n-2]+(20*n^2-130*n+210)*a[n-3])/(16*n*(2*n-1)) od:seq(a[n],n=1..25); # Emeric Deutsch, Jan 31 2005
-
lim = 21; t[0, 0] = 1; t[n_, 0] := t[n, 0] = Sum[(k + 1)*t[n - 1, k], {k, 0, n - 1}]; t[n_, k_] := t[n, k] = Sum[t[j + 1, 0]*t[n - j - 1, k - 1], {j, 0, n - k}]; Table[ t[n, 0], {n, lim}] (* Jean-François Alcover, Sep 20 2011, after Paul D. Hanna's comment *)
-
{a(n)=if(n==0,0,if(n==1,1,if(n==2,3,( (324*n^2-708*n+360)*a(n-1) -(371*n^2-1831*n+2250)*a(n-2)+(20*n^2-130*n+210)*a(n-3))/(16*n*(2*n-1)) )))} \\ Paul D. Hanna, Nov 16 2004
-
{a(n)=local(A=x+x*O(x^n));if(n==1,1, for(i=1,n,A=x*(1+A)/(1-A)^2); polcoeff(A,n))}
-
seq(n)=Vec(serreverse(x*(1 - x)^2/(1 + x) + O(x*x^n))) \\ Andrew Howroyd, Mar 07 2023
Showing 1-5 of 5 results.
Comments