cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A001764 a(n) = binomial(3*n,n)/(2*n+1) (enumerates ternary trees and also noncrossing trees).

Original entry on oeis.org

1, 1, 3, 12, 55, 273, 1428, 7752, 43263, 246675, 1430715, 8414640, 50067108, 300830572, 1822766520, 11124755664, 68328754959, 422030545335, 2619631042665, 16332922290300, 102240109897695, 642312451217745, 4048514844039120, 25594403741131680, 162250238001816900
Offset: 0

Views

Author

Keywords

Comments

Smallest number of straight line crossing-free spanning trees on n points in the plane.
Number of dissections of some convex polygon by nonintersecting diagonals into polygons with an odd number of sides and having a total number of 2n+1 edges (sides and diagonals). - Emeric Deutsch, Mar 06 2002
Number of lattice paths of n East steps and 2n North steps from (0,0) to (n,2n) and lying weakly below the line y=2x. - David Callan, Mar 14 2004
With interpolated zeros, this has g.f. 2*sqrt(3)*sin(arcsin(3*sqrt(3)*x/2)/3)/(3*x) and a(n) = C(n+floor(n/2),floor(n/2))*C(floor(n/2),n-floor(n/2))/(n+1). This is the first column of the inverse of the Riordan array (1-x^2,x(1-x^2)) (essentially reversion of y-y^3). - Paul Barry, Feb 02 2005
Number of 12312-avoiding matchings on [2n].
Number of complete ternary trees with n internal nodes, or 3n edges.
Number of rooted plane trees with 2n edges, where every vertex has even outdegree ("even trees").
a(n) is the number of noncrossing partitions of [2n] with all blocks of even size. E.g.: a(2)=3 counts 12-34, 14-23, 1234. - David Callan, Mar 30 2007
Pfaff-Fuss-Catalan sequence C^{m}_n for m=3, see the Graham et al. reference, p. 347. eq. 7.66.
Also 3-Raney sequence, see the Graham et al. reference, p. 346-7.
The number of lattice paths from (0,0) to (2n,0) using an Up-step=(1,1) and a Down-step=(0,-2) and staying above the x-axis. E.g., a(2) = 3; UUUUDD, UUUDUD, UUDUUD. - Charles Moore (chamoore(AT)howard.edu), Jan 09 2008
a(n) is (conjecturally) the number of permutations of [n+1] that avoid the patterns 4-2-3-1 and 4-2-5-1-3 and end with an ascent. For example, a(4)=55 counts all 60 permutations of [5] that end with an ascent except 42315, 52314, 52413, 53412, all of which contain a 4-2-3-1 pattern and 42513. - David Callan, Jul 22 2008
Central terms of pendular triangle A167763. - Philippe Deléham, Nov 12 2009
With B(x,t)=x+t*x^3, the comp. inverse in x about 0 is A(x,t) = Sum_{j>=0} a(j) (-t)^j x^(2j+1). Let U(x,t)=(x-A(x,t))/t. Then DU(x,t)/Dt=dU/dt+U*dU/dx=0 and U(x,0)=x^3, i.e., U is a solution of the inviscid Burgers's, or Hopf, equation. Also U(x,t)=U(x-t*U(x,t),0) and dB(x,t)/dt = U(B(x,t),t) = x^3 = U(x,0). The characteristics for the Hopf equation are x(t) = x(0) + t*U(x(t),t) = x(0) + t*U(x(0),0) = x(0) + t*x(0)^3 = B(x(0),t). These results apply to all the Fuss-Catalan sequences with 3 replaced by n>0 and 2 by n-1 (e.g., A000108 with n=2 and A002293 with n=4), see also A086810, which can be generalized to A133437, for associahedra. - Tom Copeland, Feb 15 2014
Number of intervals (i.e., ordered pairs (x,y) such that x<=y) in the Kreweras lattice (noncrossing partitions ordered by refinement) of size n, see the Bernardi & Bonichon (2009) and Kreweras (1972) references. - Noam Zeilberger, Jun 01 2016
Number of sum-indecomposable (4231,42513)-avoiding permutations. Conjecturally, number of sum-indecomposable (2431,45231)-avoiding permutations. - Alexander Burstein, Oct 19 2017
a(n) is the number of topologically distinct endstates for the game Planted Brussels Sprouts on n vertices, see Ji and Propp link. - Caleb Ji, May 14 2018
Number of complete quadrillages of 2n+2-gons. See Baryshnikov p. 12. See also Nov 10 2014 comments in A134264. - Tom Copeland, Jun 04 2018
a(n) is the number of 2-regular words on the alphabet [n] that avoid the patterns 231 and 221. Equivalently, this is the number of 2-regular tortoise-sortable words on the alphabet [n] (see the Defant and Kravitz link). - Colin Defant, Sep 26 2018
a(n) is the number of Motzkin paths of length 3n with n steps of each type, with the condition that (1, 0) and (1, 1) steps alternate (starting with (1, 0)). - Helmut Prodinger, Apr 08 2019
a(n) is the number of uniquely sorted permutations of length 2n+1 that avoid the patterns 312 and 1342. - Colin Defant, Jun 08 2019
The compositional inverse o.g.f. pair in Copeland's comment above are related to a pair of quantum fields in Balduf's thesis by Theorem 4.2 on p. 92. - Tom Copeland, Dec 13 2019
The sequences of Fuss-Catalan numbers, of which this is the first after the Catalan numbers A000108 (the next is A002293), appear in articles on random matrices and quantum physics. See Banica et al., Collins et al., and Mlotkowski et al. Interpretations of these sequences in terms of the cardinality of specific sets of noncrossing partitions are provided by A134264. - Tom Copeland, Dec 21 2019
Call C(p, [alpha], g) the number of partitions of a cyclically ordered set with p elements, of cyclic type [alpha], and of genus g (the genus g Faa di Bruno coefficients of type [alpha]). This sequence counts the genus 0 partitions (non-crossing, or planar, partitions) of p = 3n into n parts of length 3: a(n) = C(3n, [3^n], 0). For genus 1 see A371250, for genus 2 see A371251. - Robert Coquereaux, Mar 16 2024
a(n) is the total number of down steps before the first up step in all 2_1-Dyck paths of length 3*n for n > 0. A 2_1-Dyck path is a lattice path with steps (1,2), (1,-1) that starts and ends at y = 0 and does not go below the line y = -1. - Sarah Selkirk, May 10 2020
a(n) is the number of pairs (A<=B) of noncrossing partitions of [n]. - Francesca Aicardi, May 28 2022
a(n) is the number of parking functions of size n avoiding the patterns 231 and 321. - Lara Pudwell, Apr 10 2023
Number of rooted polyominoes composed of n square cells of the hyperbolic regular tiling with Schläfli symbol {4,oo}. A rooted polyomino has one external edge identified, and chiral pairs are counted as two. A stereographic projection of the {4,oo} tiling on the Poincaré disk can be obtained via the Christensson link. - Robert A. Russell, Jan 27 2024
This is instance k = 3 of the family {C(k, n)}A130564.%20-%20_Wolfdieter%20Lang">{n>=0} given in a comment in A130564. - _Wolfdieter Lang, Feb 05 2024
The number of Apollonian networks (planar 3-trees) with n+3 vertices with a given base triangle. - Allan Bickle, Feb 20 2024
Number of rooted polyominoes composed of n tetrahedral cells of the hyperbolic regular tiling with Schläfli symbol {3,3,oo}. A rooted polyomino has one external face identified, and chiral pairs are counted as two. a(n) = T(n) in the second Beineke and Pippert link. - Robert A. Russell, Mar 20 2024

Examples

			a(2) = 3 because the only dissections with 5 edges are given by a square dissected by any of the two diagonals and the pentagon with no dissecting diagonal.
G.f. = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 + 7752*x^7 + 43263*x^8 + ...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 23.
  • I. M. H. Etherington, On non-associative combinations, Proc. Royal Soc. Edinburgh, 59 (Part 2, 1938-39), 153-162.
  • I. M. H. Etherington, Some problems of non-associative combinations (I), Edinburgh Math. Notes, 32 (1940), pp. i-vi. Part II is by A. Erdelyi and I. M. H. Etherington, and is on pages vii-xiv of the same issue.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, pp. 200, 347. See also the Pólya-Szegő reference.
  • W. Kuich, Languages and the enumeration of planted plane trees. Nederl. Akad. Wetensch. Proc. Ser. A 73 = Indag. Math. 32, (1970), 268-280.
  • T. V. Narayana, Lattice Path Combinatorics with Statistical Applications. Univ. Toronto Press, 1979, p. 98.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, New York, Heidelberg, Berlin, 2 vols., 1972, Vol. 1, problem 211, p. 146 with solution on p. 348.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001762, A001763, A002294 - A002296, A006013, A025174, A063548, A064017, A072247, A072248, A134264, A143603, A258708, A256311, A188687 (binomial transform), A346628 (inverse binomial transform).
A column of triangle A102537.
Bisection of A047749 and A047761.
Row sums of triangles A108410 and A108767.
Second column of triangle A062993.
Mod 3 = A113047.
2D Polyominoes: A005034 (oriented), A005036 (unoriented), A369315 (chiral), A047749 (achiral), A000108 {3,oo}, A002293 {5,oo}.
3D Polyominoes: A007173 (oriented), A027610 (unoriented), A371350 (chiral), A371351 (achiral).
Cf. A130564 (for C(k, n) cases).

Programs

  • GAP
    List([0..25],n->Binomial(3*n,n)/(2*n+1)); # Muniru A Asiru, Oct 31 2018
    
  • Haskell
    a001764 n = a001764_list !! n
    a001764_list = 1 : [a258708 (2 * n) n | n <- [1..]]
    -- Reinhard Zumkeller, Jun 23 2015
    
  • Magma
    [Binomial(3*n,n)/(2*n+1): n in [0..30]]; // Vincenzo Librandi, Sep 04 2014
    
  • Maple
    A001764 := n->binomial(3*n,n)/(2*n+1): seq(A001764(n), n=0..25);
    with(combstruct): BB:=[T,{T=Prod(Z,F),F=Sequence(B),B=Prod(F,Z,F)}, unlabeled]:seq(count(BB,size=i),i=0..22); # Zerinvary Lajos, Apr 22 2007
    with(combstruct):BB:=[S, {B = Prod(S,S,Z), S = Sequence(B)}, labelled]: seq(count(BB, size=n)/n!, n=0..21); # Zerinvary Lajos, Apr 25 2008
    n:=30:G:=series(RootOf(g = 1+x*g^3, g),x=0,n+1):seq(coeff(G,x,k),k=0..n); # Robert FERREOL, Apr 03 2015
    alias(PS=ListTools:-PartialSums): A001764List := proc(m) local A, P, n;
    A := [1,1]; P := [1]; for n from 1 to m - 2 do P := PS(PS([op(P), P[-1]]));
    A := [op(A), P[-1]] od; A end: A001764List(25); # Peter Luschny, Mar 26 2022
  • Mathematica
    InverseSeries[Series[y-y^3, {y, 0, 24}], x] (* then a(n)=y(2n+1)=ways to place non-crossing diagonals in convex (2n+4)-gon so as to create only quadrilateral tiles *) (* Len Smiley, Apr 08 2000 *)
    Table[Binomial[3n,n]/(2n+1),{n,0,25}] (* Harvey P. Dale, Jul 24 2011 *)
  • PARI
    {a(n) = if( n<0, 0, (3*n)! / n! / (2*n + 1)!)};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( serreverse( x - x^3 + O(x^(2*n + 2))), 2*n + 1))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = 1 + O(x); for( m=1, n, A = 1 + x * A^3); polcoeff(A, n))};
    
  • PARI
    b=vector(22);b[1]=1;for(n=2,22,for(i=1,n-1,for(j=1,n-1,for(k=1,n-1,if((i-1)+(j-1)+(k-1)-(n-2),NULL,b[n]=b[n]+b[i]*b[j]*b[k])))));a(n)=b[n+1]; print1(a(0));for(n=1,21,print1(", ",a(n))) \\ Gerald McGarvey, Oct 08 2008
    
  • PARI
    Vec(1 + serreverse(x / (1+x)^3 + O(x^30))) \\ Gheorghe Coserea, Aug 05 2015
    
  • Python
    from math import comb
    def A001764(n): return comb(3*n,n)//(2*n+1) # Chai Wah Wu, Nov 10 2022
  • Sage
    def A001764_list(n) :
        D = [0]*(n+1); D[1] = 1
        R = []; b = false; h = 1
        for i in range(2*n) :
            for k in (1..h) : D[k] += D[k-1]
            if not b : R.append(D[h])
            else : h += 1
            b = not b
        return R
    A001764_list(22) # Peter Luschny, May 03 2012
    

Formula

From Karol A. Penson, Nov 08 2001: (Start)
G.f.: (2/sqrt(3*x))*sin((1/3)*arcsin(sqrt(27*x/4))).
E.g.f.: hypergeom([1/3, 2/3], [1, 3/2], 27/4*x).
Integral representation as n-th moment of a positive function on [0, 27/4]: a(n) = Integral_{x=0..27/4} (x^n*((1/12) * 3^(1/2) * 2^(1/3) * (2^(1/3)*(27 + 3 * sqrt(81 - 12*x))^(2/3) - 6 * x^(1/3))/(Pi * x^(2/3)*(27 + 3 * sqrt(81 - 12*x))^(1/3)))), n >= 0. This representation is unique. (End)
G.f. A(x) satisfies A(x) = 1+x*A(x)^3 = 1/(1-x*A(x)^2) [Cyvin (1998)]. - Ralf Stephan, Jun 30 2003
a(n) = n-th coefficient in expansion of power series P(n), where P(0) = 1, P(k+1) = 1/(1 - x*P(k)^2).
G.f. Rev(x/c(x))/x, where c(x) is the g.f. of A000108 (Rev=reversion of). - Paul Barry, Mar 26 2010
From Gary W. Adamson, Jul 07 2011: (Start)
Let M = the production matrix:
1, 1
2, 2, 1
3, 3, 2, 1
4, 4, 3, 2, 1
5, 5, 4, 3, 2, 1
...
a(n) = upper left term in M^n. Top row terms of M^n = (n+1)-th row of triangle A143603, with top row sums generating A006013: (1, 2, 7, 30, 143, 728, ...). (End)
Recurrence: a(0)=1; a(n) = Sum_{i=0..n-1, j=0..n-1-i} a(i)a(j)a(n-1-i-j) for n >= 1 (counts ternary trees by subtrees of the root). - David Callan, Nov 21 2011
G.f.: 1 + 6*x/(Q(0) - 6*x); Q(k) = 3*x*(3*k + 1)*(3*k + 2) + 2*(2*(k^2) + 5*k +3) - 6*x*(2*(k^2) + 5*k + 3)*(3*k + 4)*(3*k + 5)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 27 2011
D-finite with recurrence: 2*n*(2n+1)*a(n) - 3*(3n-1)*(3n-2)*a(n-1) = 0. - R. J. Mathar, Dec 14 2011
REVERT transform of A115140. BINOMIAL transform is A188687. SUMADJ transform of A188678. HANKEL transform is A051255. INVERT transform of A023053. INVERT transform is A098746. - Michael Somos, Apr 07 2012
(n + 1) * a(n) = A174687(n).
G.f.: F([2/3,4/3], [3/2], 27/4*x) / F([2/3,1/3], [1/2], (27/4)*x) where F() is the hypergeometric function. - Joerg Arndt, Sep 01 2012
a(n) = binomial(3*n+1, n)/(3*n+1) = A062993(n+1,1). - Robert FERREOL, Apr 03 2015
a(n) = A258708(2*n,n) for n > 0. - Reinhard Zumkeller, Jun 23 2015
0 = a(n)*(-3188646*a(n+2) + 20312856*a(n+3) - 11379609*a(n+4) + 1437501*a(n+5)) + a(n+1)*(177147*a(n+2) - 2247831*a(n+3) + 1638648*a(n+4) - 238604*a(n+5)) + a(n+2)*(243*a(n+2) + 31497*a(n+3) - 43732*a(n+4) + 8288*a(n+5)) for all integer n. - Michael Somos, Jun 03 2016
a(n) ~ 3^(3*n + 1/2)/(sqrt(Pi)*4^(n+1)*n^(3/2)). - Ilya Gutkovskiy, Nov 21 2016
Given g.f. A(x), then A(1/8) = -1 + sqrt(5), A(2/27) = (-1 + sqrt(3))*3/2, A(4/27) = 3/2, A(3/64) = -2 + 2*sqrt(7/3), A(5/64) = (-1 + sqrt(5))*2/sqrt(5), etc. A(n^2/(n+1)^3) = (n+1)/n if n > 1. - Michael Somos, Jul 17 2018
From Peter Bala, Sep 14 2021: (Start)
A(x) = exp( Sum_{n >= 1} (1/3)*binomial(3*n,n)*x^n/n ).
The sequence defined by b(n) := [x^n] A(x)^n = A224274(n) for n >= 1 and satisfies the congruence b(p) == b(1) (mod p^3) for prime p >= 3. Cf. A060941. (End)
G.f.: 1/sqrt(B(x)+(1-6*x)/(9*B(x))+1/3), with B(x):=((27*x^2-18*x+2)/54-(x*sqrt((-(4-27*x))*x))/(2*3^(3/2)))^(1/3). - Vladimir Kruchinin, Sep 28 2021
x*A'(x)/A(x) = (A(x) - 1)/(- 2*A(x) + 3) = x + 5*x^2 + 28*x^3 + 165*x^4 + ... is the o.g.f. of A025174. Cf. A002293 - A002296. - Peter Bala, Feb 04 2022
a(n) = hypergeom([1 - n, -2*n], [2], 1). Row sums of A108767. - Peter Bala, Aug 30 2023
G.f.: z*exp(3*z*hypergeom([1, 1, 4/3, 5/3], [3/2, 2, 2], (27*z)/4)) + 1.
- Karol A. Penson, Dec 19 2023
G.f.: hypergeometric([1/3, 2/3], [3/2], (3^3/2^2)*x). See the e.g.f. above. - Wolfdieter Lang, Feb 04 2024
a(n) = (3*n)! / (n!*(2*n+1)!). - Allan Bickle, Feb 20 2024
Sum_{n >= 0} a(n)*x^n/(1 + x)^(3*n+1) = 1. See A316371 and A346627. - Peter Bala, Jun 02 2024
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)^5). - Seiichi Manyama, Jun 16 2025

A005563 a(n) = n*(n+2) = (n+1)^2 - 1.

Original entry on oeis.org

0, 3, 8, 15, 24, 35, 48, 63, 80, 99, 120, 143, 168, 195, 224, 255, 288, 323, 360, 399, 440, 483, 528, 575, 624, 675, 728, 783, 840, 899, 960, 1023, 1088, 1155, 1224, 1295, 1368, 1443, 1520, 1599, 1680, 1763, 1848, 1935, 2024, 2115, 2208, 2303, 2400, 2499, 2600
Offset: 0

Views

Author

Keywords

Comments

Erdős conjectured that n^2 - 1 = k! has a solution if and only if n is 5, 11 or 71 (when k is 4, 5 or 7).
Second-order linear recurrences y(m) = 2y(m-1) + a(n)*y(m-2), y(0) = y(1) = 1, have closed form solutions involving only powers of integers. - Len Smiley, Dec 08 2001
Number of edges in the join of two cycle graphs, both of order n, C_n * C_n. - Roberto E. Martinez II, Jan 07 2002
Let k be a positive integer, M_n be the n X n matrix m_(i,j) = k^abs(i-j) then det(M_n) = (-1)^(n-1)*a(k-1)^(n-1). - Benoit Cloitre, May 28 2002
Also numbers k such that 4*k + 4 is a square. - Cino Hilliard, Dec 18 2003
For each term k, the function sqrt(x^2 + 1), starting with 1, produces an integer after k iterations. - Gerald McGarvey, Aug 19 2004
a(n) mod 3 = 0 if and only if n mod 3 > 0: a(A008585(n)) = 2; a(A001651(n)) = 0; a(n) mod 3 = 2*(1-A079978(n)). - Reinhard Zumkeller, Oct 16 2006
a(n) is the number of divisors of a(n+1) that are not greater than n. - Reinhard Zumkeller, Apr 09 2007
Nonnegative X values of solutions to the equation X^3 + X^2 = Y^2. To find Y values: b(n) = n(n+1)(n+2). - Mohamed Bouhamida, Nov 06 2007
Sequence allows us to find X values of the equation: X + (X + 1)^2 + (X + 2)^3 = Y^2. To prove that X = n^2 + 2n: Y^2 = X + (X + 1)^2 + (X + 2)^3 = X^3 + 7*X^2 + 15X + 9 = (X + 1)(X^2 + 6X + 9) = (X + 1)*(X + 3)^2 it means: (X + 1) must be a perfect square, so X = k^2 - 1 with k>=1. we can put: k = n + 1, which gives: X = n^2 + 2n and Y = (n + 1)(n^2 + 2n + 3). - Mohamed Bouhamida, Nov 12 2007
From R. K. Guy, Feb 01 2008: (Start)
Toads and Frogs puzzle:
This is also the number of moves that it takes n frogs to swap places with n toads on a strip of 2n + 1 squares (or positions, or lily pads) where a move is a single slide or jump, illustrated for n = 2, a(n) = 8 by
T T - F F
T - T F F
T F T - F
T F T F -
T F - F T
- F T F T
F - T F T
F F T - T
F F - T T
I was alerted to this by the Holton article, but on consulting Singmaster's sources, I find that the puzzle goes back at least to 1867.
Probably the first to publish the number of moves for n of each animal was Edouard Lucas in 1883. (End)
a(n+1) = terms of rank 0, 1, 3, 6, 10 = A000217 of A120072 (3, 8, 5, 15). - Paul Curtz, Oct 28 2008
Row 3 of array A163280, n >= 1. - Omar E. Pol, Aug 08 2009
Final digit belongs to a periodic sequence: 0, 3, 8, 5, 4, 5, 8, 3, 0, 9. - Mohamed Bouhamida, Sep 04 2009 [Comment edited by N. J. A. Sloane, Sep 24 2009]
Let f(x) be a polynomial in x. Then f(x + n*f(x)) is congruent to 0 (mod f(x)); here n belongs to N. There is nothing interesting in the quotients f(x + n*f(x))/f(x) when x belongs to Z. However, when x is irrational these quotients consist of two parts, a) rational integers and b) integer multiples of x. The present sequence represents the non-integer part when the polynomial is x^2 + x + 1 and x = sqrt(2), f(x+n*f(x))/f(x) = A056108(n) + a(n)*sqrt(2). - A.K. Devaraj, Sep 18 2009
For n >= 1, a(n) is the number for which 1/a(n) = 0.0101... (A000035) in base (n+1). - Rick L. Shepherd, Sep 27 2009
For n > 0, continued fraction [n, 1, n] = (n+1)/a(n); e.g., [6, 1, 6] = 7/48. - Gary W. Adamson, Jul 15 2010
Starting (3, 8, 15, ...) = binomial transform of [3, 5, 2, 0, 0, 0, ...]; e.g., a(3) = 15 = (1*3 + 2*5 +1*2) = (3 + 10 + 2). - Gary W. Adamson, Jul 30 2010
a(n) is essentially the case 0 of the polygonal numbers. The polygonal numbers are defined as P_k(n) = Sum_{i=1..n} ((k-2)*i-(k-3)). Thus P_0(n) = 2*n-n^2 and a(n) = -P_0(n+2). See also A067998 and for the case k=1 A080956. - Peter Luschny, Jul 08 2011
a(n) is the maximal determinant of a 2 X 2 matrix with integer elements from {1, ..., n+1}, so the maximum determinant of a 2x2 matrix with integer elements from {1, ..., 5} = 5^2 - 1 = a(4) = 24. - Aldo González Lorenzo, Oct 12 2011
Using four consecutive triangular numbers t1, t2, t3 and t4, plot the points (0, 0), (t1, t2), and (t3, t4) to create a triangle. Twice the area of this triangle are the numbers in this sequence beginning with n = 1 to give 8. - J. M. Bergot, May 03 2012
Given a particle with spin S = n/2 (always a half-integer value), the quantum-mechanical expectation value of the square of the magnitude of its spin vector evaluates to = S(S+1) = n(n+2)/4, i.e., one quarter of a(n) with n = 2S. This plays an important role in the theory of magnetism and magnetic resonance. - Stanislav Sykora, May 26 2012
Twice the harmonic mean [H(x, y) = (2*x*y)/(x + y)] of consecutive triangular numbers A000217(n) and A000217(n+1). - Raphie Frank, Sep 28 2012
Number m such that floor(sqrt(m)) = floor(m/floor(sqrt(m))) - 2 for m > 0. - Takumi Sato, Oct 10 2012
The solutions of equation 1/(i - sqrt(j)) = i + sqrt(j), when i = (n+1), j = a(n). For n = 1, 2 + sqrt(3) = 3.732050.. = A019973. For n = 2, 3 + sqrt(8) = 5.828427... = A156035. - Kival Ngaokrajang, Sep 07 2013
The integers in the closed form solution of a(n) = 2*a(n-1) + a(m-2)*a(n-2), n >= 2, a(0) = 0, a(1) = 1 mentioned by Len Smiley, Dec 08 2001, are m and -m + 2 where m >= 3 is a positive integer. - Felix P. Muga II, Mar 18 2014
Let m >= 3 be a positive integer. If a(n) = 2*a(n-1) + a(m-2) * a(n-2), n >= 2, a(0) = 0, a(1) = 1, then lim_{n->oo} a(n+1)/a(n) = m. - Felix P. Muga II, Mar 18 2014
For n >= 4 the Szeged index of the wheel graph W_n (with n + 1 vertices). In the Sarma et al. reference, Theorem 2.7 is incorrect. - Emeric Deutsch, Aug 07 2014
If P_{k}(n) is the n-th k-gonal number, then a(n) = t*P_{s}(n+2) - s*P_{t}(n+2) for s=t+1. - Bruno Berselli, Sep 04 2014
For n >= 1, a(n) is the dimension of the simple Lie algebra A_n. - Wolfdieter Lang, Oct 21 2015
Finding all positive integers (n, k) such that n^2 - 1 = k! is known as Brocard's problem, (see A085692). - David Covert, Jan 15 2016
For n > 0, a(n) mod (n+1) = a(n) / (n+1) = n. - Torlach Rush, Apr 04 2016
Conjecture: When using the Sieve of Eratosthenes and sieving (n+1..a(n)), with divisors (1..n) and n>0, there will be no more than a(n-1) composite numbers. - Fred Daniel Kline, Apr 08 2016
a(n) mod 8 is periodic with period 4 repeating (0,3,0,7), that is a(n) mod 8 = 5/2 - (5/2) cos(n*Pi) - sin(n*Pi/2) + sin(3*n*Pi/2). - Andres Cicuttin, Jun 02 2016
Also for n > 0, a(n) is the number of times that n-1 occurs among the first (n+1)! terms of A055881. - R. J. Cano, Dec 21 2016
The second diagonal of composites (the only prime is number 3) from the right on the Klauber triangle (see Kival Ngaokrajang link), which is formed by taking the positive integers and taking the first 1, the next 3, the following 5, and so on, each centered below the last. - Charles Kusniec, Jul 03 2017
Also the number of independent vertex sets in the n-barbell graph. - Eric W. Weisstein, Aug 16 2017
Interleaving of A000466 and A033996. - Bruce J. Nicholson, Nov 08 2019
a(n) is the number of degrees of freedom in a triangular cell for a Raviart-Thomas or Nédélec first kind finite element space of order n. - Matthew Scroggs, Apr 22 2020
From Muge Olucoglu, Jan 19 2021: (Start)
For n > 1, a(n-2) is the maximum number of elements in the second stage of the Quine-McCluskey algorithm whose minterms are not covered by the functions of n bits. At n=3, we have a(3-2) = a(1) = 1*(1+2) = 3 and f(A,B,C) = sigma(0,1,2,5,6,7).
.
0 1 2 5 6 7
+---------------
*(0,1)| X X
(0,2)| X X
(1,5)| X X
*(2,6)| X X
*(5,7)| X X
(6,7)| X X
.
*: represents the elements that are covered. (End)
1/a(n) is the ratio of the sum of the first k odd numbers and the sum of the next n*k odd numbers. - Melvin Peralta, Jul 15 2021
For n >= 1, the continued fraction expansion of sqrt(a(n)) is [n; {1, 2n}]. - Magus K. Chu, Sep 09 2022
Number of diagonals parallel to an edge in a regular (2*n+4)-gon (cf. A367204). - Paolo Xausa, Nov 21 2023
For n >= 1, also the number of minimum cyclic edge cuts in the (n+2)-trapezohedron graph. - Eric W. Weisstein, Nov 21 2024
For n >= 1, a(n) is the sum of the interior angles of a polygon with n+2 sides, in radians, multiplied by (n+2)/Pi. - Stuart E Anderson, Aug 06 2025

Examples

			G.f. = 3*x + 8*x^2 + 15*x^3 + 24*x^4 + 35*x^5 + 48*x^6 + 63*x^7 + 80*x^8 + ...
		

References

  • E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see index under Toads and Frogs Puzzle.
  • Martin Gardner, Perplexing Puzzles and Tantalizing Teasers, p. 21 (for "The Dime and Penny Switcheroo").
  • R. K. Guy, Unsolved Problems in Theory of Numbers, Section D25.
  • Derek Holton, Math in School, 37 #1 (Jan 2008) 20-22.
  • Edouard Lucas, Récréations Mathématiques, Gauthier-Villars, Vol. 2 (1883) 141-143.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

G.f.: x*(3-x)/(1-x)^3. - Simon Plouffe in his 1992 dissertation
a(n) = A000290(n+1) - 1.
A002378(a(n)) = A002378(n)*A002378(n+1); e.g., A002378(15)=240=12*20. - Charlie Marion, Dec 29 2003
a(n) = A067725(n)/3. - Zerinvary Lajos, Mar 06 2007
a(n) = Sum_{k=1..n} A144396(k). - Zerinvary Lajos, May 11 2007
a(n) = A134582(n+1)/4. - Zerinvary Lajos, Feb 01 2008
A143053(a(n)) = A000290(n+1), for n > 0. - Reinhard Zumkeller, Jul 20 2008
a(n) = Real((n+1+i)^2). - Gerald Hillier, Oct 12 2008
A053186(a(n)) = 2*n. - Reinhard Zumkeller, May 20 2009
a(n) = (n! + (n+1)!)/(n-1)!, n > 0. - Gary Detlefs, Aug 10 2009
a(n) = floor(n^5/(n^3+1)) with offset 1 (a(1)=0). - Gary Detlefs, Feb 11 2010
a(n) = a(n-1) + 2*n + 1 (with a(0)=0). - Vincenzo Librandi, Nov 18 2010
Sum_{n>=1} 1/a(n) = 3/4. - Mohammad K. Azarian, Dec 29 2010
a(n) = 2/(Integral_{x=0..Pi/2} (sin(x))^(n-1)*(cos(x))^3), for n > 0. - Francesco Daddi, Aug 02 2011
a(n) = A002378(n) + floor(sqrt(A002378(n))); pronic number + its root. - Fred Daniel Kline, Sep 16 2011
a(n-1) = A008833(n) * A068310(n) for n > 1. - Reinhard Zumkeller, Nov 26 2011
G.f.: U(0) where U(k) = -1 + (k+1)^2/(1 - x/(x + (k+1)^2/U(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Oct 19 2012
a(n) = 15*C(n+4,3)*C(n+4,5)/(C(n+4,2)*C(n+4,4)). - Gary Detlefs, Aug 05 2013
a(n) = (n+2)!/((n-1)! + n!), n > 0. - Ivan N. Ianakiev, Nov 11 2013
a(n) = 3*C(n+1,2) - C(n,2) for n >= 0. - Felix P. Muga II, Mar 11 2014
a(n) = (A016742(n+1) - 4)/4 for n >= 0. - Felix P. Muga II, Mar 11 2014
a(-2 - n) = a(n) for all n in Z. - Michael Somos, Aug 07 2014
A253607(a(n)) = 1. - Reinhard Zumkeller, Jan 05 2015
E.g.f.: x*(x + 3)*exp(x). - Ilya Gutkovskiy, Jun 03 2016
For n >= 1, a(n^2 + n - 2) = a(n-1) * a(n). - Miko Labalan, Oct 15 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = 1/4. - Amiram Eldar, Nov 04 2020
From Amiram Eldar, Feb 17 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = 2.
Product_{n>=1} (1 - 1/a(n)) = -sqrt(2)*sin(sqrt(2)*Pi)/Pi. (End)
a(n) = A000290(n+2) - n*2. See Bounded Squares illustration. - Leo Tavares, Oct 05 2021
From Leo Tavares, Oct 10 2021: (Start)
a(n) = A008585(n) + 2*A000217(n-1). See Trapezoids illustration.
2*A005563 = A054000(n+1). See Trapagons illustration.
a(n) = 2*A000217(n) + n. (End)
a(n) = (n+2)!!/(n-2)!! for n > 1. - Jacob Szlachetka, Jan 02 2022

Extensions

Partially edited by Joerg Arndt, Mar 11 2010
More terms from N. J. A. Sloane, Aug 01 2010

A003168 Number of blobs with 2n+1 edges.

Original entry on oeis.org

1, 1, 4, 21, 126, 818, 5594, 39693, 289510, 2157150, 16348960, 125642146, 976789620, 7668465964, 60708178054, 484093913917, 3884724864390, 31348290348086, 254225828706248, 2070856216759478, 16936016649259364
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of ways to dissect a convex (2n+2)-gon with non-crossing diagonals so that no (2m+1)-gons (m>0) appear. - Len Smiley
a(n) is the number of plane trees with 2n+1 leaves and all non-leaves having an odd number > 1 of children. - Jordan Tirrell, Jun 09 2017
a(n) is the number of noncrossing cacti with n+1 nodes. See A361242. - Andrew Howroyd, Mar 07 2023

Examples

			a(2)=4 because we may place exactly one diagonal in 3 ways (forming 2 quadrilaterals), or not place any (leaving 1 hexagon).
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A049124 (no 2m-gons).
Row sums of A102537, A243662. Column 2 of A336573.

Programs

  • Haskell
    import Data.List (transpose)
    a003168 0 = 1
    a003168 n = sum (zipWith (*)
       (tail $ a007318_tabl !! n)
       ((transpose $ take (3*n+1) a007318_tabl) !! (2*n+1)))
       `div` fromIntegral n
    -- Reinhard Zumkeller, Oct 27 2013
  • Maple
    Order := 40; solve(series((A-2*A^3)/(1-A^2),A)=x,A);
    A003168 := n -> `if`(n=0,1,A100327(n)/2): seq(A003168(n),n=0..20); # Peter Luschny, Jun 10 2017
  • Mathematica
    a[0] = 1; a[n_] = (2^(-n-1)*(3n)!* Hypergeometric2F1[-1-2n, -2n, -3n, -1])/((2n+1)* n!*(2n)!); Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 25 2011, after Vladimir Kruchinin *)
  • PARI
    a(n)=if(n<0,0,polcoeff(serreverse((x-2*x^3)/(1-x^2)+O(x^(2*n+2))),2*n+1))
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=(1+x*A)/(1-x*A)^2); sum(k=0,n,polcoeff(A^(n-k),k))} \\ Paul D. Hanna, Nov 17 2004
    
  • PARI
    seq(n) = Vec( 1 + serreverse(x/((1+2*x)*(1+x)^2) + O(x*x^n)) ) \\ Andrew Howroyd, Mar 07 2023
    

Formula

a(n) = Sum_{k=1..n} binomial(n, k)*binomial(2*n+k, k-1)/n.
G.f.: A(x) = Sum_{n>=0} a(n)*x^(2*n+1) satisfies (A-2*A^3)/(1-A^2)=x. - Len Smiley.
D-finite with recurrence 4*n*(2*n + 1)*(17*n - 22)*a(n) = (1207*n^3 - 2769*n^2 + 1850*n - 360)*a(n - 1) - 2*(17*n - 5)*(n - 2)*(2*n - 3)*a(n - 2). - Vladeta Jovovic, Jul 16 2004
G.f.: A(x) = 1/(1-G003169(x)) where G003169(x) is the g.f. of A003169. - Paul D. Hanna, Nov 17 2004
a(n) = JacobiP(n-1,1,n+1,3)/n for n > 0. - Mark van Hoeij, Jun 02 2010
a(n) = (1/(2*n+1))*Sum_{j=0..n} (-1)^j*2^(n-j)*binomial(2*n+1,j)*binomial(3*n-j,2*n). - Vladimir Kruchinin, Dec 24 2010
From Gary W. Adamson, Jul 08 2011: (Start)
a(n) = upper left term in M^n, M = the production matrix:
1, 1
3, 3, 1
5, 5, 3, 1
7, 7, 5, 3, 1
9, 9, 7, 5, 3, 1
... (End)
a(n) ~ sqrt(14+66/sqrt(17)) * (71+17*sqrt(17))^n / (sqrt(Pi) * n^(3/2) * 2^(4*n+4)). - Vaclav Kotesovec, Jul 01 2015
From Peter Bala, Oct 05 2015: (Start)
a(n) = (1/n) * Sum_{i = 0..n} 2^(n-i-1)*binomial(2*n,i)* binomial(n,i+1).
O.g.f. = 1 + series reversion( x/((1 + 2*x)*(1 + x)^2) ).
Logarithmically differentiating the modified g.f. 1 + 4*x + 21*x^2 + 126*x^3 + 818*x^4 + ... gives the o.g.f. for A114496, apart from the initial term. (End)
G.f.: A(x) satisfies A = 1 + x*A^3/(1-x*A^2). - Jordan Tirrell, Jun 09 2017
a(n) = A100327(n)/2 for n>=1. - Peter Luschny, Jun 10 2017

A013698 a(n) = binomial(3*n+2, n-1).

Original entry on oeis.org

1, 8, 55, 364, 2380, 15504, 100947, 657800, 4292145, 28048800, 183579396, 1203322288, 7898654920, 51915526432, 341643774795, 2250829575120, 14844575908435, 97997533741800, 647520696018735, 4282083008118300
Offset: 1

Views

Author

Joachim.Rosenthal(AT)nd.edu (Joachim Rosenthal), Emeric Deutsch

Keywords

Comments

Degree of variety K_{2,n}^1. Also number of double-rises (or odd-level peaks) in all generalized {(1,2),(1,-1)}-Dyck paths of length 3(n+1).
Number of dissections of a convex (2n+2)-gon by n-2 noncrossing diagonals into (2j+2)-gons, 1<=j<=n-1.
a(n) is the number of lattice paths from (0,0) to (3n+1,n-1) avoiding two consecutive up-steps. - Shanzhen Gao, Apr 20 2010

Crossrefs

Cf. A013699 (q=2), A013700 (q=3), A013701 (q=4), A013702 (q=5).

Programs

  • GAP
    List([1..25], n-> Binomial(3*n+2, n-1)) # G. C. Greubel, Mar 21 2019
  • Magma
    [Binomial(3*n+2, n-1): n in [1..25]]; // Vincenzo Librandi, Aug 10 2015
    
  • Maple
    seq(binomial(3*n+2,n-1), n=0..30); # Robert Israel, Aug 09 2015
  • Mathematica
    Table[Binomial[3*n+2, n-1], {n, 25}] (* Arkadiusz Wesolowski, Apr 02 2012 *)
  • PARI
    first(m)=vector(m,n,binomial(3*n+2, n-1)); /* Anders Hellström, Aug 09 2015 */
    
  • Sage
    [binomial(3*n+2, n-1) for n in (1..25)] # G. C. Greubel, Mar 21 2019
    

Formula

G.f.: g/((g-1)^3*(3*g-1)) where g*(1-g)^2 = x. - Mark van Hoeij, Nov 09 2011
a(n) = Sum_{k=0..n-1} binomial(2*n+k+2,k). - Arkadiusz Wesolowski, Apr 02 2012
D-finite with recurrence 2*(2*n+3)*(n+1)*a(n) -n*(67*n+34)*a(n-1) +30*(3*n-1)*(3*n-2)*a(n-2)=0. - R. J. Mathar, Feb 05 2013
a(n+1) = (3*n+5)*(3*n+4)*(3*n+3)*a(n)/((2*n+5)*(2*n+4)*n). - Robert Israel, Aug 09 2015
With offset 0, the o.g.f. equals f(x)*g(x)^5, where f(x) is the o.g.f. for A005809 and g(x) is the o.g.f. for A001764. More generally, f(x)*g(x)^k is the o.g.f. for the sequence binomial(3*n + k,n). Cf. A045721 (k = 1), A025174 (k = 2), A004319 (k = 3), A236194 (k = 4), A165817 (k = -1), A117671 (k = -2). - Peter Bala, Nov 04 2015

A243662 Triangle read by rows: the reversed x = 1+q Narayana triangle at m=2.

Original entry on oeis.org

1, 3, 1, 12, 8, 1, 55, 55, 15, 1, 273, 364, 156, 24, 1, 1428, 2380, 1400, 350, 35, 1, 7752, 15504, 11628, 4080, 680, 48, 1, 43263, 100947, 92169, 41895, 9975, 1197, 63, 1, 246675, 657800, 708400, 396704, 123970, 21560, 1960, 80, 1, 1430715, 4292145, 5328180, 3552120, 1381380, 318780, 42504, 3036, 99, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jun 13 2014

Keywords

Comments

See Novelli-Thibon (2014) for precise definition.
From Tom Copeland, Dec 13 2022: (Start)
The row polynomials are the nonvanishing numerator polynomials generated in the compositional, or Lagrange, inversion in x about the origin of the odd o.g.f. Od1(x,t) = x*(t*(1-x^2)-x^2) / (1-x^2) = t*x - x^3 - x^5 - x^7 - x^9 - ... .
For example, from the Lagrange inversion formula (LIF), the tenth derivative in x of (x/Od1(x,t))^11 / 11! = (1/((t*(1-x^2)-x^2) / (1-x^2)))^11 / 11! at x = 0 is (t^4 + 24*t^3 + 156*t^2 + 364*t + 273) / t^16. These polynomials are also generated by the iterated derivatives ((1/(D Od1(x,t)) D)^n g(x) evaluated at x = 0 where D = d/dx.
An explicit generating function for the polynomials can be obtained by finding the solution of the cubic equation y - t*x - y*x^2 + (1+t)*x^3 = 0 for x in terms of y and t that satisfies y(x=0;t) = 0 = x(y=0;t).
The row polynomials are also the polynomials generated in the compositional inverse of O(x,t) = x / (1+(1+t)x)*(1+x)^2) = x + (-t - 3)*x^2 + (t^2 + 4 t + 6)*x^3 + (-t^3 - 5*t^2 - 10*t - 10)*x^4 + ..., containing the truncated Pascal polynomials of A104712 / A325000.
For example, from the LIF, the third derivative of ((1 + (1+t)*x)*(1+x)^2)^4 / 4! at x = 0 is 55 + 55*t + 15*t^2 + t^3.
A natural refinement of this array was provided in a letter by Isaac Newton in 1676--a set of partition polynomials for generating the o.g.f. of the compositional inverse of the generic odd o.g.f. x + u_1 x^3 + u_2 x^5 + ... in the infinite set of indeterminates u_n. (End)
T(n,k) is the number of noncrossing cacti with n+1 nodes and n+1-k blocks. See A361242. - Andrew Howroyd, Apr 13 2023

Examples

			Triangle begins:
     1;
     3,    1;
    12,    8,    1;
    55,   55,   15,   1;
   273,  364,  156,  24,  1;
  1428, 2380, 1400, 350, 35, 1;
  ...
		

Crossrefs

Cf. A001764, A001263, A243663 (m=3).
Row sums give A003168.
Row reversed triangle is A102537.

Programs

  • Mathematica
    T[m_][n_, k_] := Binomial[(m + 1) n + 1 - k, n - k] Binomial[n, k - 1]/n;
    Table[T[2][n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 12 2019 *)
  • PARI
    T(n)=[Vecrev(p) | p<-Vec(serreverse(x/((1+x+x*y)*(1+x)^2) + O(x*x^n)))]
    { my(A=T(10)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Apr 13 2023

Formula

T(n,k) = (binomial(3*n+1,n) * binomial(n,k-1) * binomial(n-1,k-1)) / (binomial(3*n,k-1) * (3*n+1)) = (A001764(n) * A001263(n,k) * k) / binomial(3*n,k-1) for 1 <= k <= n (conjectured). - Werner Schulte, Nov 22 2018
T(n,k) = binomial(3*n+1-k,n-k) * binomial(n,k-1) / n for 1 <= k <= n, more generally: T_m(n,k) = binomial((m+1)*n+1-k,n-k) * binomial(n,k-1) / n for 1 <= k <= n and some fixed integer m > 1. - Werner Schulte, Nov 22 2018
G.f.: A(x,y) is the series reversion of x/((1 + x + x*y)*(1 + x)^2). - Andrew Howroyd, Apr 13 2023

Extensions

Data and Example (T(2,2) and T(5,3)) corrected and more terms added by Werner Schulte, Nov 22 2018

A370258 Triangle read by rows: T(n, k) = binomial(n, k)*binomial(2*n+k, k), 0 <= k <= n.

Original entry on oeis.org

1, 1, 3, 1, 10, 15, 1, 21, 84, 84, 1, 36, 270, 660, 495, 1, 55, 660, 2860, 5005, 3003, 1, 78, 1365, 9100, 27300, 37128, 18564, 1, 105, 2520, 23800, 107100, 244188, 271320, 116280, 1, 136, 4284, 54264, 339150, 1139544, 2089164, 1961256, 735471, 1, 171, 6840, 111720, 921690, 4239774, 11306064
Offset: 0

Views

Author

Peter Bala, Feb 13 2024

Keywords

Comments

Compare with A063007(n, k) = binomial(n, k)*binomial(n+k, k), the table of coefficients of the shifted Legendre polynomials P(n, 2*x + 1).

Examples

			Triangle begins
n\k| 0    1     2      3       4       5       6       7
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 0 | 1
 1 | 1    3
 2 | 1   10    15
 3 | 1   21    84     84
 4 | 1   36   270    660     495
 5 | 1   55   660   2860    5005    3003
 6 | 1   78  1365   9100   27300   37128   18564
 7 | 1  105  2520  23800  107100  244188  271320  116280
 ...
		

Crossrefs

A114496 (row sums), A000984 (alt. row sums unsigned), A005809 (main diagonal), A090763 (first subdiagonal), A014105 (column 1).

Programs

  • Maple
    seq(print(seq(binomial(n, k)*binomial(2*n+k, k), k = 0..n)), n = 0..10);

Formula

n-th row polynomial R(n, x) = Sum_{k = 0..n} binomial(n, k)*binomial(2*n+k, k)*x^k = (1 + x)^n * Sum_{k = 0..n} binomial(n, k)*binomial(2*n, k)*(x/(1 + x))^k = Sum_{k = 0..n} A110608(n, n-k)*x^k*(1 + x)^(n-k).
(x - 1)^n * R(n, 1/(x - 1)) = Sum_{k = 0..n} binomial(n,k)*binomial(2*n, n-k)*x^k = the n-th row polynomial of A110608.
R(n, x) = hypergeom([-n, 2*n + 1], [1], -x).
Second-order differential equation: ( (1 + x)^n * (x + x^2)*R(n, x)' )' = n*(2*n + 1)*(1 + x)^n * R(n, x), where the prime indicates differentiation w.r.t. x.
Equivalently, x*(1 + x)*R(n, x)'' + ((n + 2)*x + 1)*R(n, x)' - n*(2*n + 1)*R(n, x)' = 0.
Analog of Rodrigues' formula for the shifted Legendre polynomials:
R(n, x) = 1/(1 + x)^n * 1/n! * (d/dx)^n (x*(1 + x)^2)^n.
Analog of Rodrigues' formula for the Legendre polynomials:
R(n, (x-1)/2) = 1/(n!*2^n) * 1/(1 + x)^n *(d/dx)^n ((x - 1)*(x + 1)^2)^n.
Orthogonality properties:
Integral_{x = -1..0} (1 + x)^n * R(n, x) * R(m, x) dx = 0 for n > m.
Integral_{x = -1..0} (1 + x)^n * R(n, x)^2 dx = 1/(3*n + 1).
Integral_{x = -1..0} (1 + x)^(n+m) * R(n, x) * R(m, x) dx = 0 for m >= 2*n + 1 or m <= (n - 1)/2.
Integral_{x = -1..0} (1 + x)^k * R(n, x) dx = 0 for n <= k <= 2*n - 1;
Integral_{x = -1..0} (1 + x)^(2*n) * R(n, x) dx = (2*n)!*n!/(3*n+1)! = 1/A090816(n).
Recurrence for row polynomials:
2*n*(2*n - 1)*((9*n - 12)*x + 8*n - 11)*(1 + x)*R(n, x) = (9*(3*n - 1)*(3*n - 2)*(3*n - 4)*x^3 + 3*(3*n - 1)*(3*n - 2)*(20*n - 27)*x^2 + 6*(3*n - 2)*(20*n^2 - 34*n + 9)*x + 2*(32*n^3 - 76*n^2 + 50*n - 9))*R(n-1, x) - 2*(n - 1)*(2*n - 3)*((9*n - 3)*x + 8*n - 3)*R(n-2, x), with R(0, x) = 1, R(1, x) = 1 + 3*x.
Conjecture: exp( Sum_{n >= 1} R(n,t)*x^n/n ) = 1 + (1 + 3*t)*x + (1 + 8*t + 12*t^2)*x^2 + ... is the o.g.f. for A102537. If true, then it would follows that, for each integer t, the sequence u = {R(n,t) : n >= 0} satisfies the Gauss congruences u(m*p^r) == u(m*p^(r-1)) (mod p^r) for all primes p and positive integers m and r.
R(n, 1) = A114496(n); R(n, -1) = (-1)^n * A000984(n).
R(n, 2) = A339710(n); R(n, -2) = (-1)^n * A026000(n).
(2^n)*R(n, -1/2) = A234839(n).
Showing 1-6 of 6 results.