A215341
Expansion of series_reversion( x/(1+x^4*sum(k>=0, x^k)) ) / x.
Original entry on oeis.org
1, 0, 0, 0, 1, 1, 1, 1, 5, 10, 16, 23, 53, 118, 232, 411, 813, 1718, 3568, 7012, 13925, 28603, 59533, 121878, 247915, 509136, 1057278, 2194138, 4536943, 9394145, 19552639, 40803472, 85131237, 177640486, 371426592, 778275264, 1632420197, 3425607187, 7195476245, 15134138683, 31866093569
Offset: 0
Cf.
A000108 (rev. of x/(1+1*sum(k>=1,x^k)) ),
A005043 (rev. of x/(1+x*sum(k>=1,x^k)) ),
A114997 (rev. of x/(1+x^2*sum(k>=1,x^k)) ).
Cf.
A001003 (rev. of x*(1-1*sum(k=1,N,x^k)) ),
A046736 (rev. of x*(1-x*sum(k=1,N,x^k)) ),
A054514 (rev. of x*(1-x^2*sum(k=1,N,x^k)) ),
A215342 (rev. of x*(1-x^3*sum(k=1,N,x^k)) ).
-
b:= proc(x, y, t) option remember; `if`(y0 and t in [0, 4],
b(x-1, y, 0), 0) +b(x, y-1, min(t+1, 4))))
end:
a:= n-> b(n, n, 0):
seq(a(n), n=0..50); # Alois P. Heinz, Apr 16 2013
-
InverseSeries[x/(1+x^4/(1-x)) + O[x]^50] // CoefficientList[#, x]& // Rest (* Jean-François Alcover, Mar 29 2017 *)
-
a(n):=sum(binomial(n+1,i)*binomial(n-3*i-1,n-4*i),i,0,floor(n/4))/(n+1); /* Vladimir Kruchinin, Apr 01 2019 */
-
N=66; Vec( serreverse(x/(1+x^4*sum(k=0,N,x^k))+O(x^N)) / x )
Modified definition to obtain offset 0 for combinatorial interpretation,
Joerg Arndt, Apr 16 2013
A054515
Number of ways to place non-intersecting diagonals in convex (n+2)-gon so as to create no quadrilaterals.
Original entry on oeis.org
1, 1, 2, 6, 21, 78, 301, 1198, 4888, 20340, 85986, 368239, 1594183, 6965380, 30675399, 136026759, 606848034, 2721783023, 12265670909, 55511013680, 252193872912, 1149742659556, 5258257323304, 24117924005616, 110915268468358, 511334146237807, 2362650323603539
Offset: 0
a(3) = 6 because the pentagon allows null placement and five ways to place two diagonals.
- Eli Bagno, Estrella Eisenberg, Shulamit Reches, and Moriah Sigron, Blockwise simple permutations, arXiv:2303.13115 [math.CO], 2023.
- Eli Bagno, Estrella Eisenberg, Shulamit Reches, and Moriah Sigron, Geometric view of interval poset permutations, arXiv:2411.13193 [math.CO], 2024. See pp. 3, 8.
- Daniel Birmajer, Juan B. Gil, and Michael D. Weiner, Colored partitions of a convex polygon by noncrossing diagonals, arXiv preprint arXiv:1503.05242 [math.CO], 2015
- Mathilde Bouvel, Lapo Cioni, and Benjamin Izart, The interval posets of permutations seen from the decomposition tree perspective, arXiv:2110.10000 [math.CO], 2021.
- Len Smiley, Generalization and some variants, see Quad-free.
- Bridget Eileen Tenner, Interval posets for permutations, arXiv:2007.06142 [math.CO], 2020-2021.
-
read("transforms") :
taylor( (1-2*y+y^2-y^3)/(1-y),y=0,50) ;
gfun[seriestolist](%) ;
REVERT(%) ; # R. J. Mathar, Nov 04 2021
-
InverseSeries[Series[(y-2*y^2+y^3-y^4)/(1-y), {y, 0, 24}], x] (* then A(x)=[y(x)-x]/x *)
-
my(N=28, x='x+O('x^N)); Vec(serreverse((x-2*x^2+x^3-x^4)/(1-x))) \\ Hugo Pfoertner, Jan 26 2024
A215342
Expansion of series reversion of x*(1-x^3*sum(k>=1, x^k)).
Original entry on oeis.org
1, 0, 0, 0, 1, 1, 1, 1, 6, 12, 19, 27, 71, 166, 329, 579, 1222, 2756, 5921, 11754, 24179, 52372, 114031, 239726, 502269, 1074961, 2333143, 5017552, 10714567, 23006558, 49861081, 108122488, 233691980, 505329915, 1097463037, 2389325284, 5199960642, 11314793335, 24663217250, 53864633059
Offset: 1
Use the Lang and the Abramowitz and Stegun links in A111785. In the A-S list of partitions of the integer n on page 831 null all partitions containing 1, 2, or 3. These correspond to the null coefficients of x^2, x^3, and x^4 in the series to be reverted and to 3-, 4-, and 5-gons not being allowed in the dissections. a(9)=6 corresponds to the A-S partitions (n=8,m=1, partition 1)=8 and (8,2,4)=4^2, and these in turn correspond to one undissected 10-gon + five ways to divide a 10-gon into two 6-gons. a(10)=12 corresponds to (9,1,1)=9 and (9,2,4)=4,5, corresponding to one undissected 11-gon + the eleven ways to divide an 11-gon into a 6-gon and 7-gon. - _Tom Copeland_, Feb 15 2014
- Vaclav Kotesovec, Table of n, a(n) for n = 1..250
- Alison Schuetz, Gwyneth Whieldon, Polygonal Dissections and Reversions of Series, arXiv:1401.7194 [math.CO]
- D. Birmajer, J. B. Gil, M. D. Weiner, Colored partitions of a convex polygon by noncrossing diagonals, arXiv preprint arXiv:1503.05242 [math.CO], 2015.
Cf.
A001003 (rev. of x*(1-1*sum(k>=1,x^k)) ),
A046736 (rev. of x*(1-x*sum(k>=1,x^k)) ),
A054514 (rev. of x*(1-x^2*sum(k>=1,x^k)) ).
Cf.
A000108 (rev. of x/(1+1*sum(k>=1,x^k)) ),
A005043 (rev. of x/(1+x*sum(k>=1,x^k)) ),
A114997 (rev. of x/(1+x^2*sum(k>=1,x^k)) ),
A215341 (rev. of x/(1+x^3*sum(k>=1,x^k)) ).
-
nmax=20; aa=ConstantArray[0,nmax]; aa[[1]]=0; Do[AGF=1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[1-(1+x)*AGF+x*AGF^2 +x^4*AGF^5,x,j]==0,koef][[1]]; aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}] (* Vaclav Kotesovec, Mar 23 2014 *)
-
N=66; Vec(serreverse(x*(1-x^3*sum(k=1,N,x^k))+O(x^N)))
A369011
Expansion of (1/x) * Series_Reversion( x * (1-x^3/(1-x))^2 ).
Original entry on oeis.org
1, 0, 0, 2, 2, 2, 17, 36, 59, 240, 669, 1452, 4538, 13574, 34505, 99816, 299112, 825768, 2364715, 7023466, 20182611, 58327250, 172491553, 505163444, 1476966513, 4370772096, 12924382671, 38149522136, 113266357609, 336894290910, 1001473479313, 2985508193930
Offset: 0
-
my(N=40, x='x+O('x^N)); Vec(serreverse(x*(1-x^3/(1-x))^2)/x)
-
a(n, s=3, t=2, u=-2) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((t+u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);
A366071
Expansion of (1/x) * Series_Reversion( x*(1+x-x^3)/(1+x) ).
Original entry on oeis.org
1, 0, 0, 1, -1, 1, 3, -8, 14, 1, -49, 144, -162, -139, 1159, -2532, 2036, 6062, -26282, 47440, -11474, -190071, 606163, -838984, -481092, 5479390, -13618658, 13030368, 28786262, -148598623, 294393355, -128639411, -1086088045, 3848604261, -5935686369, -1750697623
Offset: 0
-
a(n) = sum(k=0, n\3, (-1)^(n-k)*binomial(n+k, k)*binomial(n-2*k-1, n-3*k))/(n+1);
A369014
Expansion of (1/x) * Series_Reversion( x * (1-x^3/(1-x))^3 ).
Original entry on oeis.org
1, 0, 0, 3, 3, 3, 36, 78, 129, 685, 2043, 4554, 17233, 57279, 153045, 509848, 1724739, 5117643, 16445555, 55165536, 173225715, 555899673, 1847495415, 5971507824, 19333284247, 63975307425, 209807070669, 685973054145, 2269660792842, 7501194321663, 24725092907853
Offset: 0
-
my(N=40, x='x+O('x^N)); Vec(serreverse(x*(1-x^3/(1-x))^3)/x)
-
a(n, s=3, t=3, u=-3) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((t+u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);
A365725
G.f. satisfies A(x) = 1 + x^3*A(x)^4*(1 + x*A(x)).
Original entry on oeis.org
1, 0, 0, 1, 1, 0, 4, 9, 5, 22, 78, 91, 175, 680, 1224, 1938, 6270, 14630, 24794, 63756, 166980, 322920, 720720, 1900080, 4125888, 8803008, 22151360, 51778804, 111882100, 267682272, 645736432, 1442390092, 3346519020, 8094247798, 18657762006, 42890295734
Offset: 0
-
a(n) = sum(k=0, n\3, binomial(k, n-3*k)*binomial(n+k+1, k)/(n+k+1));
A368931
Expansion of (1/x) * Series_Reversion( x * (1-x) * (1-x-x^3) ).
Original entry on oeis.org
1, 2, 7, 31, 154, 819, 4560, 26244, 154874, 932074, 5698745, 35297535, 221016593, 1396717756, 8896798020, 57062237502, 368201804973, 2388587515239, 15568995139404, 101913055166811, 669678357109300, 4415837460391845, 29210203356645090
Offset: 0
-
a(n) = sum(k=0, n\3, binomial(n+k, k)*binomial(3*n-2*k+1, n-3*k))/(n+1);
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)*(1-x-x^3))/x)
A365695
G.f. satisfies A(x) = 1 + x^3*A(x)^5 / (1 - x*A(x)).
Original entry on oeis.org
1, 0, 0, 1, 1, 1, 6, 12, 19, 62, 156, 318, 852, 2254, 5262, 13441, 35543, 88772, 226880, 596937, 1539188, 3980364, 10468270, 27410289, 71702956, 189169352, 499529048, 1318355542, 3493861461, 9278408639, 24647900618, 65620808508, 175037591303, 467277998136
Offset: 0
-
a(n) = sum(k=0, n\3, binomial(n-2*k-1, n-3*k)*binomial(n+2*k+1, k)/(n+2*k+1));
A365694
G.f. satisfies A(x) = 1 + x^3*A(x)^2 / (1 - x*A(x)).
Original entry on oeis.org
1, 0, 0, 1, 1, 1, 3, 6, 10, 20, 42, 84, 170, 354, 740, 1549, 3269, 6945, 14811, 31711, 68177, 147091, 318313, 690837, 1503351, 3279445, 7169907, 15708485, 34482475, 75830981, 167042763, 368548926, 814341362, 1801867812, 3992172298, 8855912464, 19668236110
Offset: 0
-
CoefficientList[Series[2/(1 + x + Sqrt[1 + x*(-2 + x - 4*x^2)]), {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 16 2023 *)
-
a(n) = sum(k=0, n\3, binomial(n-2*k-1, n-3*k)*binomial(n-k+1, k)/(n-k+1));
Showing 1-10 of 13 results.
Comments