A114997
Number of ordered trees with n edges and no unary or binary nodes.
Original entry on oeis.org
0, 0, 1, 1, 1, 4, 8, 13, 31, 71, 144, 318, 729, 1611, 3604, 8249, 18803, 42907, 98858, 228474, 528735, 1228800, 2865180, 6693712, 15676941, 36807239, 86584783, 204060509, 481823778, 1139565120, 2699329341, 6403500057, 15211830451, 36183117255, 86171536894, 205459894230, 490417795075
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Andrei Asinowski, Axel Bacher, Cyril Banderier, Bernhard Gittenberger, Analytic combinatorics of lattice paths with forbidden patterns, the vectorial kernel method, and generating functions for pushdown automata, Laboratoire d'Informatique de Paris Nord (LIPN 2019).
- Nachum Dershowitz and Shmuel Zaks, More patterns in trees: Up and down, young and old, odd and even, SIAM J. Discrete Mathematics, 23 (2009), 447-465.
Cf.
A000108 (rev. of x/(1+1*Sum_{k>=1} x^k) ),
A005043 (rev. of x/(1+x*Sum_{k>=1} x^k) ),
A215341 (rev. of x/(1+x^3*Sum_{k>=1} x^k) ).
-
eq := x^3*A^3+x*A^2-(1+x)*A+1 = 0: A := RootOf(eq, A): Aser := series(A, x = 0, 40): seq(coeff(Aser, x, n), n = 1 .. 38); # Emeric Deutsch, Jan 13 2015
-
Table[Sum[1/(n+1)*Binomial[n+1,k]*Binomial[2*k-n-3,n-k],{k,Ceiling[(n+3)/2],n}],{n,1,20}] (* Vaclav Kotesovec, Mar 22 2014 *)
-
a(n)=sum(k=ceil((n+3)/2), n, (1/(n+1) * binomial(n+1, k) * binomial(2*k-n-3, n-k)) ); \\ Joerg Arndt, Aug 19 2012
-
N=66; gf=serreverse(x/(1+x^2*sum(k=1,N,x^k))+O(x^N)) / x;
/* = 1 + x^3 + x^4 + x^5 + 4*x^6 + 8*x^7 + 13*x^8 + 31*x^9 + ... */
v114997=Vec(gf) /* = [1, 0, 0, 1, 1, 1, 4, 8, 13, 31, ...] */ \\ Joerg Arndt, Aug 19 2012
A215340
Expansion of series_reversion( x/(1 + sum(k>=1, x^A032766(k)) ) ) / x.
Original entry on oeis.org
1, 1, 1, 2, 6, 16, 40, 107, 307, 893, 2597, 7646, 22878, 69162, 210402, 644098, 1984598, 6149428, 19143220, 59840692, 187781992, 591343894, 1868106990, 5918537492, 18800935948, 59869902152, 191081899648, 611138052146, 1958410654202, 6287175115130, 20218209139666, 65120537016867
Offset: 0
The 16 Dyck words of semilength 5 without substrings UUU..UU of length 2, 5, 8, etc. (using '1' for U and '.' for D) are
01: 1.1.1.1.1.
02: 1.1.111...
03: 1.111...1.
04: 1.111..1..
05: 1.111.1...
06: 1.1111....
07: 111...1.1.
08: 111..1..1.
09: 111..1.1..
10: 111.1...1.
11: 111.1..1..
12: 111.1.1...
13: 1111....1.
14: 1111...1..
15: 1111..1...
16: 1111.1....
- _Joerg Arndt_, Apr 16 2013
-
b:= proc(x, y, t) option remember;
`if`(y0 and t<>2, b(x-1, y, 0), 0)+b(x, y-1, irem(t+1, 3))))
end:
a:= n-> b(n, n, 0):
seq(a(n), n=0..40); # Alois P. Heinz, Apr 16 2013
-
b[x_, y_, t_] := b[x, y, t] = If[y0 && t != 2, b[x-1, y, 0], 0] + b[x, y-1, Mod[t+1, 3]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Apr 08 2015, after Alois P. Heinz *)
-
N = 66; x = 'x + O('x^N);
rf = x/(1+sum(n=1, N, ((n%3)!=2)*x^n ) );
gf = serreverse(rf)/x;
v = Vec(gf)
Modified definition to obtain offset 0 for combinatorial interpretation,
Joerg Arndt, Apr 16 2013
A215342
Expansion of series reversion of x*(1-x^3*sum(k>=1, x^k)).
Original entry on oeis.org
1, 0, 0, 0, 1, 1, 1, 1, 6, 12, 19, 27, 71, 166, 329, 579, 1222, 2756, 5921, 11754, 24179, 52372, 114031, 239726, 502269, 1074961, 2333143, 5017552, 10714567, 23006558, 49861081, 108122488, 233691980, 505329915, 1097463037, 2389325284, 5199960642, 11314793335, 24663217250, 53864633059
Offset: 1
Use the Lang and the Abramowitz and Stegun links in A111785. In the A-S list of partitions of the integer n on page 831 null all partitions containing 1, 2, or 3. These correspond to the null coefficients of x^2, x^3, and x^4 in the series to be reverted and to 3-, 4-, and 5-gons not being allowed in the dissections. a(9)=6 corresponds to the A-S partitions (n=8,m=1, partition 1)=8 and (8,2,4)=4^2, and these in turn correspond to one undissected 10-gon + five ways to divide a 10-gon into two 6-gons. a(10)=12 corresponds to (9,1,1)=9 and (9,2,4)=4,5, corresponding to one undissected 11-gon + the eleven ways to divide an 11-gon into a 6-gon and 7-gon. - _Tom Copeland_, Feb 15 2014
- Vaclav Kotesovec, Table of n, a(n) for n = 1..250
- Alison Schuetz, Gwyneth Whieldon, Polygonal Dissections and Reversions of Series, arXiv:1401.7194 [math.CO]
- D. Birmajer, J. B. Gil, M. D. Weiner, Colored partitions of a convex polygon by noncrossing diagonals, arXiv preprint arXiv:1503.05242 [math.CO], 2015.
Cf.
A001003 (rev. of x*(1-1*sum(k>=1,x^k)) ),
A046736 (rev. of x*(1-x*sum(k>=1,x^k)) ),
A054514 (rev. of x*(1-x^2*sum(k>=1,x^k)) ).
Cf.
A000108 (rev. of x/(1+1*sum(k>=1,x^k)) ),
A005043 (rev. of x/(1+x*sum(k>=1,x^k)) ),
A114997 (rev. of x/(1+x^2*sum(k>=1,x^k)) ),
A215341 (rev. of x/(1+x^3*sum(k>=1,x^k)) ).
-
nmax=20; aa=ConstantArray[0,nmax]; aa[[1]]=0; Do[AGF=1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[1-(1+x)*AGF+x*AGF^2 +x^4*AGF^5,x,j]==0,koef][[1]]; aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}] (* Vaclav Kotesovec, Mar 23 2014 *)
-
N=66; Vec(serreverse(x*(1-x^3*sum(k=1,N,x^k))+O(x^N)))
A365702
G.f. satisfies A(x) = 1 + x^5*A(x)^5 / (1 - x*A(x)).
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 6, 12, 19, 27, 36, 81, 177, 341, 592, 951, 1726, 3417, 6766, 12812, 22951, 41531, 78222, 151291, 291957, 550015, 1024683, 1924543, 3671017, 7063893, 13532120, 25730347, 48840523, 93154161, 178806493, 343926597, 660308308, 1265195467
Offset: 0
-
a(n) = sum(k=0, n\5, binomial(n-4*k-1, n-5*k)*binomial(n+1, k))/(n+1);
A365730
G.f. satisfies A(x) = 1 + x^4*A(x)^4*(1 + x*A(x)).
Original entry on oeis.org
1, 0, 0, 0, 1, 1, 0, 0, 4, 9, 5, 0, 22, 78, 91, 35, 140, 680, 1224, 969, 1254, 5985, 14630, 17710, 17710, 55660, 164450, 269100, 299520, 593775, 1805076, 3681405, 4951692, 7594752, 20173560, 47303520, 76404460, 110676324, 239784864, 589602585, 1106339923
Offset: 0
-
a(n) = sum(k=0, n\4, binomial(k, n-4*k)*binomial(n+1, k))/(n+1);
A366054
Expansion of (1/x) * Series_Reversion( x*(1-x)^2/(1-x+x^4) ).
Original entry on oeis.org
1, 1, 2, 5, 15, 49, 168, 594, 2149, 7919, 29627, 112254, 429884, 1661308, 6470678, 25375070, 100106145, 397018815, 1582005849, 6330533220, 25428891084, 102497788194, 414445390730, 1680617637425, 6833083703094, 27849689394894, 113762630541908
Offset: 0
-
a(n) = sum(k=0, n\4, binomial(n+1, k)*binomial(2*n-3*k, n-4*k))/(n+1);
A366055
Expansion of (1/x) * Series_Reversion( x*(1-x)^3/(1-x+x^4) ).
Original entry on oeis.org
1, 2, 7, 30, 144, 741, 3996, 22287, 127494, 743919, 4410255, 26489073, 160843708, 985729010, 6089215057, 37875775533, 237021929322, 1491204370335, 9426547131330, 59843910602283, 381378377720469, 2438954925930558, 15646857920046108
Offset: 0
-
a(n) = sum(k=0, n\4, binomial(n+1, k)*binomial(3*n-3*k+1, n-4*k))/(n+1);
A366056
Expansion of (1/x) * Series_Reversion( x*(1-x)^4/(1-x+x^4) ).
Original entry on oeis.org
1, 3, 15, 91, 613, 4408, 33143, 257400, 2048825, 16625940, 137033316, 1144010387, 9653706723, 82208879366, 705587243802, 6097408839400, 53007770199641, 463269048213536, 4067950092964440, 35871913838983980, 317533385082542404, 2820492099258807887
Offset: 0
-
a(n) = sum(k=0, n\4, binomial(n+1, k)*binomial(4*n-3*k+2, n-4*k))/(n+1);
A365696
G.f. satisfies A(x) = 1 + x^4*A(x)^2 / (1 - x*A(x)).
Original entry on oeis.org
1, 0, 0, 0, 1, 1, 1, 1, 3, 6, 10, 15, 26, 49, 92, 165, 294, 535, 994, 1852, 3437, 6379, 11905, 22344, 42058, 79260, 149601, 283038, 536806, 1020066, 1941317, 3699922, 7062308, 13500402, 25842489, 49528164, 95031920, 182545222, 351023451, 675678911, 1301838177
Offset: 0
-
CoefficientList[Series[(1 + x - Sqrt[1 - 2*x + x^2 - 4*x^4])/(2*x*(1 + x^3)), {x, 0, 40}], x] (* Vaclav Kotesovec, Sep 26 2023 *)
-
a(n) = sum(k=0, n\4, binomial(n-3*k-1, n-4*k)*binomial(n-2*k+1, k)/(n-2*k+1));
A365697
G.f. satisfies A(x) = 1 + x^4*A(x)^3 / (1 - x*A(x)).
Original entry on oeis.org
1, 0, 0, 0, 1, 1, 1, 1, 4, 8, 13, 19, 38, 79, 153, 273, 509, 999, 1979, 3818, 7331, 14279, 28189, 55599, 109275, 215165, 426093, 846638, 1683215, 3348212, 6673679, 13333171, 26679522, 53437369, 107151335, 215154204, 432586412, 870678377, 1754094266
Offset: 0
-
a(n) = sum(k=0, n\4, binomial(n-3*k-1, n-4*k)*binomial(n-k+1, k)/(n-k+1));
Showing 1-10 of 10 results.
Comments