cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A114997 Number of ordered trees with n edges and no unary or binary nodes.

Original entry on oeis.org

0, 0, 1, 1, 1, 4, 8, 13, 31, 71, 144, 318, 729, 1611, 3604, 8249, 18803, 42907, 98858, 228474, 528735, 1228800, 2865180, 6693712, 15676941, 36807239, 86584783, 204060509, 481823778, 1139565120, 2699329341, 6403500057, 15211830451, 36183117255, 86171536894, 205459894230, 490417795075
Offset: 1

Views

Author

Nachum Dershowitz, Feb 23 2006

Keywords

Comments

Also counts sequences of n natural numbers, excluding 1 and 2, such that the sum of every prefix is no more than its length.
a(n) is the number of Dyck paths of semilength n with all ascents of length >= 3. For example, a(6) = 4 counts U^6.D^6, U^3.D.U^3.D^5, U^3.D^2.U^3.D^4, U^3.D^3.U^3.D^3 where ^ denotes repetition and a dot denotes concatenation. - David Callan, Dec 08 2021

Crossrefs

Cf. A000108 (rev. of x/(1+1*Sum_{k>=1} x^k) ), A005043 (rev. of x/(1+x*Sum_{k>=1} x^k) ), A215341 (rev. of x/(1+x^3*Sum_{k>=1} x^k) ).

Programs

  • Maple
    eq := x^3*A^3+x*A^2-(1+x)*A+1 = 0: A := RootOf(eq, A): Aser := series(A, x = 0, 40): seq(coeff(Aser, x, n), n = 1 .. 38); # Emeric Deutsch, Jan 13 2015
  • Mathematica
    Table[Sum[1/(n+1)*Binomial[n+1,k]*Binomial[2*k-n-3,n-k],{k,Ceiling[(n+3)/2],n}],{n,1,20}] (* Vaclav Kotesovec, Mar 22 2014 *)
  • PARI
    a(n)=sum(k=ceil((n+3)/2), n, (1/(n+1) * binomial(n+1, k) * binomial(2*k-n-3, n-k)) ); \\ Joerg Arndt, Aug 19 2012
    
  • PARI
    N=66; gf=serreverse(x/(1+x^2*sum(k=1,N,x^k))+O(x^N)) / x;
    /* = 1 + x^3 + x^4 + x^5 + 4*x^6 + 8*x^7 + 13*x^8 + 31*x^9 + ... */
    v114997=Vec(gf) /* = [1, 0, 0, 1, 1, 1, 4, 8, 13, 31, ...] */  \\ Joerg Arndt, Aug 19 2012

Formula

a(n) = Sum_{(n+3)/2 <= k <= n} (1/(n+1) * binomial(n+1, k) * binomial(2*k-n-3, n-k)).
If A(x) is the g.f. for the sequence with a(0)=1, then x^3*A^3+x*A^2-(1 + x)*A+1 = 0. - Emeric Deutsch, Jan 13 2015
Let A(x) be the g.f. for the sequence with a(0)=1, then x*A(x) is the reversion of x/(1+x^2*sum(k>=1,x^k)). - Joerg Arndt, Aug 19 2012 (proved by Emeric Deutsch, Jan 13 2015)
Recurrence: (n+1)*(n+2)*(28*n^2 - 38*n - 15)*a(n) = -4*(n+1)*(14*n^3 - 12*n^2 + 7*n - 15)*a(n-1) + (n-2)*(140*n^3 + 90*n^2 - 221*n + 45)*a(n-2) + 6*(n-2)*(28*n^3 - 24*n^2 - 75*n + 95)*a(n-3) + 23*(n-3)*(n-2)*(28*n^2 + 18*n - 25)*a(n-4). - Vaclav Kotesovec, Mar 22 2014
a(n) ~ c / (n^(3/2) * r^n), where r = (4*sqrt(2) - 3 + 23*sqrt((344*sqrt(2))/529 - 235/529))/46 = 0.402505948621022106992... is the root of the equation 23*r^4+6*r^3+5*r^2-2*r-1 = 0 and c = sqrt((280 + 133*sqrt(2) - 25*sqrt(14*(11 + 8*sqrt(2)))) / (7*Pi))/4 = 0.273007516... - Vaclav Kotesovec, Mar 22 2014, updated Jan 14 2015

Extensions

Offset set to 1 by Joerg Arndt, Aug 19 2012

A215340 Expansion of series_reversion( x/(1 + sum(k>=1, x^A032766(k)) ) ) / x.

Original entry on oeis.org

1, 1, 1, 2, 6, 16, 40, 107, 307, 893, 2597, 7646, 22878, 69162, 210402, 644098, 1984598, 6149428, 19143220, 59840692, 187781992, 591343894, 1868106990, 5918537492, 18800935948, 59869902152, 191081899648, 611138052146, 1958410654202, 6287175115130, 20218209139666, 65120537016867
Offset: 0

Views

Author

Joerg Arndt, Aug 19 2012

Keywords

Comments

Number of Dyck n-paths avoiding ascents of length == 2 mod 3, see example. - David Scambler, Apr 16 2013
This is a special case of the following: let S be a set of positive numbers, r(x) = x/(1 + sum(e in S, x^e)), and f(x)=series_reversion(r(x)) / x, then f is the g.f. for the number of Dyck words of semilength n with substrings UUU...UU only of lengths e in S (that is, all ascent lengths are in S). [Joerg Arndt, Apr 16 2013]

Examples

			The 16 Dyck words of semilength 5 without substrings UUU..UU of length 2, 5, 8, etc. (using '1' for U and '.' for D) are
01:   1.1.1.1.1.
02:   1.1.111...
03:   1.111...1.
04:   1.111..1..
05:   1.111.1...
06:   1.1111....
07:   111...1.1.
08:   111..1..1.
09:   111..1.1..
10:   111.1...1.
11:   111.1..1..
12:   111.1.1...
13:   1111....1.
14:   1111...1..
15:   1111..1...
16:   1111.1....
- _Joerg Arndt_, Apr 16 2013
		

Crossrefs

Cf. A215341.

Programs

  • Maple
    b:= proc(x, y, t) option remember;
          `if`(y0 and t<>2, b(x-1, y, 0), 0)+b(x, y-1, irem(t+1, 3))))
        end:
    a:= n-> b(n, n, 0):
    seq(a(n), n=0..40);  # Alois P. Heinz, Apr 16 2013
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[y0 && t != 2, b[x-1, y, 0], 0] + b[x, y-1, Mod[t+1, 3]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Apr 08 2015, after Alois P. Heinz *)
  • PARI
    N = 66;  x = 'x + O('x^N);
    rf = x/(1+sum(n=1, N, ((n%3)!=2)*x^n ) );
    gf = serreverse(rf)/x;
    v = Vec(gf)

Formula

G.f. A(x) satisfies 0 = -x^3*A(x)^4 + (-x + 1)*A(x) - 1. [Joerg Arndt, Mar 01 2014]
Recurrence: 27*(n-1)*n*(n+1)*(2*n-5)*(4*n-11)*(4*n-7)*a(n) = 9*(n-1)*n*(4*n-11)*(96*n^3 - 456*n^2 + 616*n - 197)*a(n-1) - 3*(n-1)*(1728*n^5 - 15552*n^4 + 53164*n^3 - 85322*n^2 + 63369*n - 17010)*a(n-2) + (4*n-9)*(4*n-3)*(728*n^4 - 6188*n^3 + 19267*n^2 - 25987*n + 12810)*a(n-3) - 3*(n-3)*(2*n-3)*(3*n-10)*(3*n-8)*(4*n-7)*(4*n-3)*a(n-4). - Vaclav Kotesovec, Mar 22 2014
a(n) ~ sqrt(2*(3+r)/(3*(1-r)^3)) / (3*sqrt(Pi)*n^(3/2)*r^n), where r = 0.295932936709444136... is the root of the equation 27*(1-r)^4 = 256*r^3. - Vaclav Kotesovec, Mar 22 2014
a(n) = 1/(n + 1)*Sum_{k = 0..floor(n/3)} binomial(n + 1, n - 3*k)*binomial(n + k, n). - Peter Bala, Aug 02 2016

Extensions

Modified definition to obtain offset 0 for combinatorial interpretation, Joerg Arndt, Apr 16 2013

A215342 Expansion of series reversion of x*(1-x^3*sum(k>=1, x^k)).

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 1, 1, 6, 12, 19, 27, 71, 166, 329, 579, 1222, 2756, 5921, 11754, 24179, 52372, 114031, 239726, 502269, 1074961, 2333143, 5017552, 10714567, 23006558, 49861081, 108122488, 233691980, 505329915, 1097463037, 2389325284, 5199960642, 11314793335, 24663217250, 53864633059
Offset: 1

Views

Author

Joerg Arndt, Aug 19 2012

Keywords

Comments

Dissections (using non-intersecting diagonals) of a convex (n+1)-gon into k-gons where k>=6. [Joerg Arndt, Feb 15 2014]

Examples

			Use the Lang and the Abramowitz and Stegun links in A111785. In the A-S list of partitions of the integer n on page 831 null all partitions containing 1, 2, or 3. These correspond to the null coefficients of x^2, x^3, and x^4 in the series to be reverted and to 3-, 4-, and 5-gons not being allowed in the dissections. a(9)=6 corresponds to the A-S partitions (n=8,m=1, partition 1)=8 and (8,2,4)=4^2, and these in turn correspond to one undissected 10-gon + five ways to divide a 10-gon into two 6-gons. a(10)=12 corresponds to (9,1,1)=9 and (9,2,4)=4,5, corresponding to one undissected 11-gon + the eleven ways to divide an 11-gon into a 6-gon and 7-gon. - _Tom Copeland_, Feb 15 2014
		

Crossrefs

Cf. A001003 (rev. of x*(1-1*sum(k>=1,x^k)) ), A046736 (rev. of x*(1-x*sum(k>=1,x^k)) ), A054514 (rev. of x*(1-x^2*sum(k>=1,x^k)) ).
Cf. A000108 (rev. of x/(1+1*sum(k>=1,x^k)) ), A005043 (rev. of x/(1+x*sum(k>=1,x^k)) ), A114997 (rev. of x/(1+x^2*sum(k>=1,x^k)) ), A215341 (rev. of x/(1+x^3*sum(k>=1,x^k)) ).

Programs

  • Mathematica
    nmax=20; aa=ConstantArray[0,nmax]; aa[[1]]=0; Do[AGF=1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[1-(1+x)*AGF+x*AGF^2 +x^4*AGF^5,x,j]==0,koef][[1]]; aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}] (* Vaclav Kotesovec, Mar 23 2014 *)
  • PARI
    N=66; Vec(serreverse(x*(1-x^3*sum(k=1,N,x^k))+O(x^N)))

Formula

Recurrence: 283*(n-3)*(n-2)*(n-1)*n*(14438110231*n^6 - 346214993274*n^5 + 3438949212625*n^4 - 18105364836570*n^3 + 53265099505324*n^2 - 82987438028496*n + 53465930027280)*a(n) = (n-3)*(n-2)*(n-1)*(5399853226394*n^7 - 137584187324067*n^6 + 1483504918415939*n^5 - 8763694066910355*n^4 + 30585682233578711*n^3 - 62946796681030518*n^2 + 70573456271906136*n - 33158656683118080)*a(n-1) - (n-3)*(n-2)*(534210078547*n^8 - 14946795065326*n^7 + 180235890644998*n^6 - 1221993860476624*n^5 + 5087726442447403*n^4 - 13295664719568394*n^3 + 21246368278875372*n^2 - 18919520411340456*n + 7154560952974080)*a(n-2) - 5*(n-4)*(n-3)*(28876220462*n^8 - 793496758165*n^7 + 9354947999333*n^6 - 61627542806839*n^5 + 247116200695877*n^4 - 613894185501244*n^3 + 913857055091496*n^2 - 732955177968120*n + 234541607788800)*a(n-3) + 5*(9947857949159*n^10 - 357916425755694*n^9 + 5753280746412201*n^8 - 54388490463504720*n^7 + 334719732595671573*n^6 - 1400557913088383070*n^5 + 4032929135663406319*n^4 - 7886242788829977540*n^3 + 10015113186875731788*n^2 - 7452248915385205056*n + 2464721951024954880)*a(n-4) - 8*(n-5)*(2*n - 9)*(4*n - 21)*(4*n - 19)*(14438110231*n^6 - 259586331888*n^5 + 1924445899720*n^4 - 7522955714190*n^3 + 16337121992089*n^2 - 18661982982042*n + 8745398997120)*a(n-5). - Vaclav Kotesovec, Mar 22 2014
a(n) ~ s*sqrt((3*r*s+r-4)/(5*(3*r*s-2*r-2))) / (2*sqrt(Pi) * n^(3/2) * r^(n-1)), where s = 1.1954869989505368389... is the root of the equation 64 - 897*s + 2460*s^2 - 2787*s^3 + 1442*s^4 - 283*s^5 = 0, and r = (4*s-5)/(s*(3*s-4)) = 0.441061092405258554919... - Vaclav Kotesovec, Mar 23 2014
G.f. A(x) for offset 0 satisfies 1-(1+x)*A(x) + x*A(x)^2 + x^4*A(x)^5 = 0. - Vaclav Kotesovec, Mar 23 2014

A365702 G.f. satisfies A(x) = 1 + x^5*A(x)^5 / (1 - x*A(x)).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 6, 12, 19, 27, 36, 81, 177, 341, 592, 951, 1726, 3417, 6766, 12812, 22951, 41531, 78222, 151291, 291957, 550015, 1024683, 1924543, 3671017, 7063893, 13532120, 25730347, 48840523, 93154161, 178806493, 343926597, 660308308, 1265195467
Offset: 0

Views

Author

Seiichi Manyama, Sep 16 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\5, binomial(n-4*k-1, n-5*k)*binomial(n+1, k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/5)} binomial(n-4*k-1,n-5*k) * binomial(n+1,k).

A365730 G.f. satisfies A(x) = 1 + x^4*A(x)^4*(1 + x*A(x)).

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 0, 0, 4, 9, 5, 0, 22, 78, 91, 35, 140, 680, 1224, 969, 1254, 5985, 14630, 17710, 17710, 55660, 164450, 269100, 299520, 593775, 1805076, 3681405, 4951692, 7594752, 20173560, 47303520, 76404460, 110676324, 239784864, 589602585, 1106339923
Offset: 0

Views

Author

Seiichi Manyama, Sep 17 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, binomial(k, n-4*k)*binomial(n+1, k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/4)} binomial(k,n-4*k) * binomial(n+1,k).

A366054 Expansion of (1/x) * Series_Reversion( x*(1-x)^2/(1-x+x^4) ).

Original entry on oeis.org

1, 1, 2, 5, 15, 49, 168, 594, 2149, 7919, 29627, 112254, 429884, 1661308, 6470678, 25375070, 100106145, 397018815, 1582005849, 6330533220, 25428891084, 102497788194, 414445390730, 1680617637425, 6833083703094, 27849689394894, 113762630541908
Offset: 0

Views

Author

Seiichi Manyama, Sep 27 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, binomial(n+1, k)*binomial(2*n-3*k, n-4*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/4)} binomial(n+1,k) * binomial(2*n-3*k,n-4*k).

A366055 Expansion of (1/x) * Series_Reversion( x*(1-x)^3/(1-x+x^4) ).

Original entry on oeis.org

1, 2, 7, 30, 144, 741, 3996, 22287, 127494, 743919, 4410255, 26489073, 160843708, 985729010, 6089215057, 37875775533, 237021929322, 1491204370335, 9426547131330, 59843910602283, 381378377720469, 2438954925930558, 15646857920046108
Offset: 0

Views

Author

Seiichi Manyama, Sep 27 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, binomial(n+1, k)*binomial(3*n-3*k+1, n-4*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/4)} binomial(n+1,k) * binomial(3*n-3*k+1,n-4*k).

A366056 Expansion of (1/x) * Series_Reversion( x*(1-x)^4/(1-x+x^4) ).

Original entry on oeis.org

1, 3, 15, 91, 613, 4408, 33143, 257400, 2048825, 16625940, 137033316, 1144010387, 9653706723, 82208879366, 705587243802, 6097408839400, 53007770199641, 463269048213536, 4067950092964440, 35871913838983980, 317533385082542404, 2820492099258807887
Offset: 0

Views

Author

Seiichi Manyama, Sep 27 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, binomial(n+1, k)*binomial(4*n-3*k+2, n-4*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/4)} binomial(n+1,k) * binomial(4*n-3*k+2,n-4*k).

A365696 G.f. satisfies A(x) = 1 + x^4*A(x)^2 / (1 - x*A(x)).

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 1, 1, 3, 6, 10, 15, 26, 49, 92, 165, 294, 535, 994, 1852, 3437, 6379, 11905, 22344, 42058, 79260, 149601, 283038, 536806, 1020066, 1941317, 3699922, 7062308, 13500402, 25842489, 49528164, 95031920, 182545222, 351023451, 675678911, 1301838177
Offset: 0

Views

Author

Seiichi Manyama, Sep 16 2023

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 + x - Sqrt[1 - 2*x + x^2 - 4*x^4])/(2*x*(1 + x^3)), {x, 0, 40}], x] (* Vaclav Kotesovec, Sep 26 2023 *)
  • PARI
    a(n) = sum(k=0, n\4, binomial(n-3*k-1, n-4*k)*binomial(n-2*k+1, k)/(n-2*k+1));

Formula

a(n) = Sum_{k=0..floor(n/4)} binomial(n-3*k-1,n-4*k) * binomial(n-2*k+1,k) / (n-2*k+1).
From Vaclav Kotesovec, Sep 26 2023: (Start)
G.f.: (1 + x - sqrt(1 - 2*x + x^2 - 4*x^4)) / (2*x*(1 + x^3)).
a(n) ~ 2^(n + 3/2) / (sqrt(Pi) * 3^(3/2) * n^(3/2)). (End)

A365697 G.f. satisfies A(x) = 1 + x^4*A(x)^3 / (1 - x*A(x)).

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 1, 1, 4, 8, 13, 19, 38, 79, 153, 273, 509, 999, 1979, 3818, 7331, 14279, 28189, 55599, 109275, 215165, 426093, 846638, 1683215, 3348212, 6673679, 13333171, 26679522, 53437369, 107151335, 215154204, 432586412, 870678377, 1754094266
Offset: 0

Views

Author

Seiichi Manyama, Sep 16 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, binomial(n-3*k-1, n-4*k)*binomial(n-k+1, k)/(n-k+1));

Formula

a(n) = Sum_{k=0..floor(n/4)} binomial(n-3*k-1,n-4*k) * binomial(n-k+1,k) / (n-k+1).
Showing 1-10 of 10 results.