cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A365699 G.f. satisfies A(x) = 1 + x^5*A(x)^2 / (1 - x*A(x)).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 3, 6, 10, 15, 21, 33, 57, 101, 175, 291, 477, 791, 1341, 2310, 3986, 6839, 11681, 19966, 34300, 59245, 102647, 177963, 308483, 534973, 929147, 1616981, 2818967, 4920299, 8594665, 15023561, 26283971, 46030771, 80695333, 141593087
Offset: 0

Views

Author

Seiichi Manyama, Sep 16 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\5, binomial(n-4*k-1, n-5*k)*binomial(n-3*k+1, k)/(n-3*k+1));

Formula

a(n) = Sum_{k=0..floor(n/5)} binomial(n-4*k-1,n-5*k) * binomial(n-3*k+1,k) / (n-3*k+1).

A365700 G.f. satisfies A(x) = 1 + x^5*A(x)^3 / (1 - x*A(x)).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 4, 8, 13, 19, 26, 46, 88, 163, 284, 466, 781, 1369, 2468, 4449, 7856, 13724, 24084, 42788, 76759, 137785, 246418, 439757, 786132, 1411148, 2541368, 4581906, 8259500, 14889781, 26871106, 48573823, 87934175, 159333544, 288857216
Offset: 0

Views

Author

Seiichi Manyama, Sep 16 2023

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 43; A[] = 0; Do[A[x] = 1 + x^5*A[x]^3 / (1 - x*A[x])+ O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Stefano Spezia, May 29 2025 *)
  • PARI
    a(n) = sum(k=0, n\5, binomial(n-4*k-1, n-5*k)*binomial(n-2*k+1, k)/(n-2*k+1));

Formula

a(n) = Sum_{k=0..floor(n/5)} binomial(n-4*k-1,n-5*k) * binomial(n-2*k+1,k) / (n-2*k+1).
a(n) ~ s*sqrt((1 - r*s)*(5 - 4*r*s)/(Pi*(3 - r*s*(3 - r*s)))) / (2*n^(3/2)*r^n), where r = 0.53247307479161512230023149440436598140650951738583 and s = 1.2504652351088857309836364363044636883260447207988... are roots of the system of equations r^5*s^3 = (s-1)*(1 - r*s), (s-1)*(3 - 2*r*s) = s*(1 - r*s). - Vaclav Kotesovec, May 29 2025

A365701 G.f. satisfies A(x) = 1 + x^5*A(x)^4 / (1 - x*A(x)).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 5, 10, 16, 23, 31, 62, 128, 243, 423, 686, 1192, 2223, 4223, 7843, 13991, 24856, 45108, 83673, 156223, 288535, 527971, 966803, 1784663, 3319988, 6183424, 11483613, 21284475, 39499855, 73558147, 137347615, 256616567, 479231240
Offset: 0

Views

Author

Seiichi Manyama, Sep 16 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\5, binomial(n-4*k-1, n-5*k)*binomial(n-k+1, k)/(n-k+1));

Formula

a(n) = Sum_{k=0..floor(n/5)} binomial(n-4*k-1,n-5*k) * binomial(n-k+1,k) / (n-k+1).

A365698 G.f. satisfies A(x) = 1 + x^5 / (1 - x*A(x)).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 4, 7, 11, 16, 22, 31, 47, 76, 126, 207, 331, 517, 801, 1251, 1987, 3206, 5212, 8465, 13677, 21997, 35341, 56937, 92169, 149860, 244274, 398383, 649379, 1058055, 1724575, 2814475, 4600923, 7533150, 12347908, 20252837, 33230545
Offset: 0

Views

Author

Seiichi Manyama, Sep 16 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\5, binomial(n-4*k-1, n-5*k)*binomial(n-5*k+1, k)/(n-5*k+1));

Formula

G.f.: A(x) = 2*(1+x^5) / (1+x+sqrt( (1+x)^2 - 4*x*(1+x^5) )).
a(n) = Sum_{k=0..floor(n/5)} binomial(n-4*k-1,n-5*k) * binomial(n-5*k+1,k) / (n-5*k+1).

A366057 Expansion of (1/x) * Series_Reversion( x/(1-x+x^5) ).

Original entry on oeis.org

1, -1, 1, -1, 1, 0, -5, 20, -55, 125, -246, 406, -461, -144, 3004, -11978, 35113, -86293, 181663, -314603, 365922, 150023, -2696308, 10969573, -32970453, 82976409, -178372934, 314133884, -367436684, -179661091, 2923282216, -11972239216, 36369188841, -92517132841
Offset: 0

Views

Author

Seiichi Manyama, Sep 27 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\5, (-1)^(n-k)*binomial(n+1, k)*binomial(n-k+1, n-5*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/5)} (-1)^(n-k) * binomial(n+1,k) * binomial(n-k+1,n-5*k).
Showing 1-5 of 5 results.