cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A215341 Expansion of series_reversion( x/(1+x^4*sum(k>=0, x^k)) ) / x.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 1, 1, 5, 10, 16, 23, 53, 118, 232, 411, 813, 1718, 3568, 7012, 13925, 28603, 59533, 121878, 247915, 509136, 1057278, 2194138, 4536943, 9394145, 19552639, 40803472, 85131237, 177640486, 371426592, 778275264, 1632420197, 3425607187, 7195476245, 15134138683, 31866093569
Offset: 0

Views

Author

Joerg Arndt, Aug 19 2012

Keywords

Comments

Number of Dyck words of semilength n with substrings UUU...UU (ascents) only of lengths >= 4. See A215340 for an explanation. [Joerg Arndt, Apr 16 2013]

Crossrefs

Cf. A000108 (rev. of x/(1+1*sum(k>=1,x^k)) ), A005043 (rev. of x/(1+x*sum(k>=1,x^k)) ), A114997 (rev. of x/(1+x^2*sum(k>=1,x^k)) ).
Cf. A001003 (rev. of x*(1-1*sum(k=1,N,x^k)) ), A046736 (rev. of x*(1-x*sum(k=1,N,x^k)) ), A054514 (rev. of x*(1-x^2*sum(k=1,N,x^k)) ), A215342 (rev. of x*(1-x^3*sum(k=1,N,x^k)) ).

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y0 and t in [0, 4],
           b(x-1, y, 0), 0) +b(x, y-1, min(t+1, 4))))
        end:
    a:= n-> b(n, n, 0):
    seq(a(n), n=0..50);  # Alois P. Heinz, Apr 16 2013
  • Mathematica
    InverseSeries[x/(1+x^4/(1-x)) + O[x]^50] // CoefficientList[#, x]& // Rest (* Jean-François Alcover, Mar 29 2017 *)
  • Maxima
    a(n):=sum(binomial(n+1,i)*binomial(n-3*i-1,n-4*i),i,0,floor(n/4))/(n+1); /* Vladimir Kruchinin, Apr 01 2019 */
  • PARI
    N=66; Vec( serreverse(x/(1+x^4*sum(k=0,N,x^k))+O(x^N)) / x )
    

Formula

G.f. A(x) satisfies 0 = -x^4*A(x)^4 - x*A(x)^2 + (x + 1)*A(x) - 1. [Joerg Arndt, Mar 01 2014]
Recurrence: 2*n*(n+1)*(2*n+3)*(16204*n^4 - 82948*n^3 + 139973*n^2 - 85643*n + 10674)*a(n) = - (n-1)*n*(307876*n^5 - 960260*n^4 + 288863*n^3 + 582749*n^2 + 5406*n + 12696)*a(n-1) + 4*(n-2)*(129632*n^6 - 469136*n^5 + 354226*n^4 + 317255*n^3 - 469674*n^2 + 176517*n - 21420)*a(n-2) - 2*(n-3)*(n-2)*(16204*n^5 - 34336*n^4 + 82943*n^3 - 208775*n^2 + 192120*n - 40656)*a(n-3) + 6*(n-3)*(n-2)*(97224*n^5 - 351852*n^4 + 179198*n^3 + 540009*n^2 - 571727*n + 92968)*a(n-4) + 229*(n-4)*(n-3)*(n-2)*(16204*n^4 - 18132*n^3 - 11647*n^2 + 10275*n - 1740)*a(n-5). - Vaclav Kotesovec, Mar 22 2014
a(n) ~ sqrt((s-1)*s^3/(6-8*s+3*s^2)) / (2*sqrt(Pi)*n^(3/2)*r^n), where r = 0.4577644245749322..., s = 1.232809919151165... are roots of the system of equations 1 + r*s^2 + r^4*s^4 = (1+r)*s, 1+r = 2*r*s + 4*r^4*s^3. - Vaclav Kotesovec, Mar 22 2014
a(n) = (1/(n+1)) * Sum_{i=0..floor(n/4)} C(n+1,i) * C(n-3*i-1,n-4*i). - Vladimir Kruchinin, Apr 01 2019

Extensions

Modified definition to obtain offset 0 for combinatorial interpretation, Joerg Arndt, Apr 16 2013

A215342 Expansion of series reversion of x*(1-x^3*sum(k>=1, x^k)).

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 1, 1, 6, 12, 19, 27, 71, 166, 329, 579, 1222, 2756, 5921, 11754, 24179, 52372, 114031, 239726, 502269, 1074961, 2333143, 5017552, 10714567, 23006558, 49861081, 108122488, 233691980, 505329915, 1097463037, 2389325284, 5199960642, 11314793335, 24663217250, 53864633059
Offset: 1

Views

Author

Joerg Arndt, Aug 19 2012

Keywords

Comments

Dissections (using non-intersecting diagonals) of a convex (n+1)-gon into k-gons where k>=6. [Joerg Arndt, Feb 15 2014]

Examples

			Use the Lang and the Abramowitz and Stegun links in A111785. In the A-S list of partitions of the integer n on page 831 null all partitions containing 1, 2, or 3. These correspond to the null coefficients of x^2, x^3, and x^4 in the series to be reverted and to 3-, 4-, and 5-gons not being allowed in the dissections. a(9)=6 corresponds to the A-S partitions (n=8,m=1, partition 1)=8 and (8,2,4)=4^2, and these in turn correspond to one undissected 10-gon + five ways to divide a 10-gon into two 6-gons. a(10)=12 corresponds to (9,1,1)=9 and (9,2,4)=4,5, corresponding to one undissected 11-gon + the eleven ways to divide an 11-gon into a 6-gon and 7-gon. - _Tom Copeland_, Feb 15 2014
		

Crossrefs

Cf. A001003 (rev. of x*(1-1*sum(k>=1,x^k)) ), A046736 (rev. of x*(1-x*sum(k>=1,x^k)) ), A054514 (rev. of x*(1-x^2*sum(k>=1,x^k)) ).
Cf. A000108 (rev. of x/(1+1*sum(k>=1,x^k)) ), A005043 (rev. of x/(1+x*sum(k>=1,x^k)) ), A114997 (rev. of x/(1+x^2*sum(k>=1,x^k)) ), A215341 (rev. of x/(1+x^3*sum(k>=1,x^k)) ).

Programs

  • Mathematica
    nmax=20; aa=ConstantArray[0,nmax]; aa[[1]]=0; Do[AGF=1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[1-(1+x)*AGF+x*AGF^2 +x^4*AGF^5,x,j]==0,koef][[1]]; aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}] (* Vaclav Kotesovec, Mar 23 2014 *)
  • PARI
    N=66; Vec(serreverse(x*(1-x^3*sum(k=1,N,x^k))+O(x^N)))

Formula

Recurrence: 283*(n-3)*(n-2)*(n-1)*n*(14438110231*n^6 - 346214993274*n^5 + 3438949212625*n^4 - 18105364836570*n^3 + 53265099505324*n^2 - 82987438028496*n + 53465930027280)*a(n) = (n-3)*(n-2)*(n-1)*(5399853226394*n^7 - 137584187324067*n^6 + 1483504918415939*n^5 - 8763694066910355*n^4 + 30585682233578711*n^3 - 62946796681030518*n^2 + 70573456271906136*n - 33158656683118080)*a(n-1) - (n-3)*(n-2)*(534210078547*n^8 - 14946795065326*n^7 + 180235890644998*n^6 - 1221993860476624*n^5 + 5087726442447403*n^4 - 13295664719568394*n^3 + 21246368278875372*n^2 - 18919520411340456*n + 7154560952974080)*a(n-2) - 5*(n-4)*(n-3)*(28876220462*n^8 - 793496758165*n^7 + 9354947999333*n^6 - 61627542806839*n^5 + 247116200695877*n^4 - 613894185501244*n^3 + 913857055091496*n^2 - 732955177968120*n + 234541607788800)*a(n-3) + 5*(9947857949159*n^10 - 357916425755694*n^9 + 5753280746412201*n^8 - 54388490463504720*n^7 + 334719732595671573*n^6 - 1400557913088383070*n^5 + 4032929135663406319*n^4 - 7886242788829977540*n^3 + 10015113186875731788*n^2 - 7452248915385205056*n + 2464721951024954880)*a(n-4) - 8*(n-5)*(2*n - 9)*(4*n - 21)*(4*n - 19)*(14438110231*n^6 - 259586331888*n^5 + 1924445899720*n^4 - 7522955714190*n^3 + 16337121992089*n^2 - 18661982982042*n + 8745398997120)*a(n-5). - Vaclav Kotesovec, Mar 22 2014
a(n) ~ s*sqrt((3*r*s+r-4)/(5*(3*r*s-2*r-2))) / (2*sqrt(Pi) * n^(3/2) * r^(n-1)), where s = 1.1954869989505368389... is the root of the equation 64 - 897*s + 2460*s^2 - 2787*s^3 + 1442*s^4 - 283*s^5 = 0, and r = (4*s-5)/(s*(3*s-4)) = 0.441061092405258554919... - Vaclav Kotesovec, Mar 23 2014
G.f. A(x) for offset 0 satisfies 1-(1+x)*A(x) + x*A(x)^2 + x^4*A(x)^5 = 0. - Vaclav Kotesovec, Mar 23 2014

A350116 Number of ways to partition the set of vertices of a convex {n+8}-gon into 3 non-intersecting polygons.

Original entry on oeis.org

0, 12, 45, 110, 220, 390, 637, 980, 1440, 2040, 2805, 3762, 4940, 6370, 8085, 10120, 12512, 15300, 18525, 22230, 26460, 31262, 36685, 42780, 49600, 57200, 65637, 74970, 85260, 96570, 108965, 122512, 137280, 153340, 170765, 189630, 210012, 231990, 255645, 281060, 308320
Offset: 0

Views

Author

Janaka Rodrigo, Dec 21 2021

Keywords

Comments

Equivalently, the number of noncrossing set partitions of an {n+8}-set into 3 blocks with 3 or more elements in each block.

Examples

			The a(1) = 12 solutions are:
   {123}{456}{789}, {234}{567}{891}, {345}{678}{912},
   {156}{234}{567}, {267}{345}{891}, {378}{456}{912},
   {489}{567}{123}, {591}{678}{234}, {612}{789}{345},
   {723}{891}{456}, {834}{912}{567}, {945}{123}{678}.
In the above, the numbers can be considered to be the partition of a 9-set into 3 blocks or the partition of the vertices of a convex 9-gon into 3 triangles (with the vertices labeled 1..9 in order).
a(2) = 45 corresponding to the number of ways to partition the vertices of a 10-gon into two triangles and one quadrilateral.
		

Crossrefs

Column k=3 of A350248.
The case of any number of parts for an n-gon is A114997.
The case of exactly 2 parts for a {n+5}-gon is A055998.

Programs

  • Mathematica
    a[n_] := n*(n + 1)*(n + 7)*(n + 8)/12; Array[a, 40, 0] (* Amiram Eldar, Dec 21 2021 *)

Formula

a(n) = n*(n+1)*(n+7)*(n+8)/12.
G.f.: -x*(12-15*x+5*x^2)/(x-1)^5 . - R. J. Mathar, Aug 03 2022

A350248 Triangle read by rows: T(n,k) is the number of noncrossing partitions of an n-set into k blocks of size 3 or more, n >= 0, 0 <= k <= floor(n/3).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 3, 0, 1, 7, 0, 1, 12, 0, 1, 18, 12, 0, 1, 25, 45, 0, 1, 33, 110, 0, 1, 42, 220, 55, 0, 1, 52, 390, 286, 0, 1, 63, 637, 910, 0, 1, 75, 980, 2275, 273, 0, 1, 88, 1440, 4900, 1820, 0, 1, 102, 2040, 9520, 7140, 0, 1, 117, 2805, 17136, 21420, 1428
Offset: 0

Views

Author

Andrew Howroyd and Janaka Rodrigo, Dec 21 2021

Keywords

Examples

			Triangle begins:
  1;
  0;
  0;
  0, 1;
  0, 1;
  0, 1;
  0, 1,   3;
  0, 1,   7;
  0, 1,  12;
  0, 1,  18,   12;
  0, 1,  25,   45;
  0, 1,  33,  110;
  0, 1,  42,  220,   55;
  0, 1,  52,  390,  286;
  0, 1,  63,  637,  910;
  0, 1,  75,  980, 2275,  273;
  0, 1,  88, 1440, 4900, 1820;
  0, 1, 102, 2040, 9520, 7140;
  ...
		

Crossrefs

Columns k=2..5 are A055998, A350116, A350286, A350303.
Row sums are A114997.
Cf. A001263 (blocks of any size), A108263 (blocks of size 2 or more).

Programs

  • PARI
    T(n)={my(p=1+O(x^3)); for(i=1, n\3, p=1+y*(x*p)^3/(1-x*p)); [Vecrev(t)| t<-Vec(p + O(x*x^n))]}
    {my(A=T(12)); for(i=1, #A, print(A[i]))}
    
  • PARI
    T(n,k) = if(n==0 || k>n\3, k==0, binomial(n+1, n-k+1) * binomial(n-2*k-1, k-1) / (n+1)) \\ Andrew Howroyd, Dec 31 2021

Formula

G.f.: A(x,y) satisfies A(x,y) = 1 + y*(x*A(x,y))^3/(1 - x*A(x,y)).
T(n,k) = binomial(n+1, n-k+1) * binomial(n-2*k-1, k-1) / (n+1) for n > 0.

A366052 Expansion of (1/x) * Series_Reversion( x*(1-x)^3/(1-x+x^3) ).

Original entry on oeis.org

1, 2, 7, 31, 154, 819, 4559, 26226, 154664, 930040, 5680920, 35150493, 219850505, 1387717660, 8828668582, 56553846890, 364449091112, 2361118198094, 15369247139879, 100468188756849, 659271433474584, 4341140182940382, 28675590236716905
Offset: 0

Views

Author

Seiichi Manyama, Sep 27 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(n+1, k)*binomial(3*n-2*k+1, n-3*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(n+1,k) * binomial(3*n-2*k+1,n-3*k).

A365702 G.f. satisfies A(x) = 1 + x^5*A(x)^5 / (1 - x*A(x)).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 6, 12, 19, 27, 36, 81, 177, 341, 592, 951, 1726, 3417, 6766, 12812, 22951, 41531, 78222, 151291, 291957, 550015, 1024683, 1924543, 3671017, 7063893, 13532120, 25730347, 48840523, 93154161, 178806493, 343926597, 660308308, 1265195467
Offset: 0

Views

Author

Seiichi Manyama, Sep 16 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\5, binomial(n-4*k-1, n-5*k)*binomial(n+1, k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/5)} binomial(n-4*k-1,n-5*k) * binomial(n+1,k).

A365724 G.f. satisfies A(x) = 1 + x^3*A(x)^3*(1 + x*A(x)).

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 3, 7, 4, 12, 45, 55, 77, 286, 546, 728, 1960, 4760, 7548, 15504, 39729, 75582, 140448, 336490, 723327, 1366200, 2992990, 6758895, 13522275, 28094040, 63183315, 133231800, 273896532, 600805296, 1305229332, 2720740792, 5843241088, 12797739672
Offset: 0

Views

Author

Seiichi Manyama, Sep 17 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(k, n-3*k)*binomial(n+1, k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(k,n-3*k) * binomial(n+1,k).

A366051 Expansion of (1/x) * Series_Reversion( x/(1-x+x^3) ).

Original entry on oeis.org

1, -1, 1, 0, -3, 9, -16, 13, 29, -157, 391, -562, -32, 3002, -10373, 20747, -18083, -47941, 271117, -712216, 1066699, 122131, -6464446, 22907125, -46951992, 40883304, 120187926, -679375906, 1809757015, -2731745887, -468147579, 17768126376, -63256877763
Offset: 0

Views

Author

Seiichi Manyama, Sep 27 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, (-1)^(n-k)*binomial(n+1, k)*binomial(n-k+1, n-3*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} (-1)^(n-k) * binomial(n+1,k) * binomial(n-k+1,n-3*k).

A365695 G.f. satisfies A(x) = 1 + x^3*A(x)^5 / (1 - x*A(x)).

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 6, 12, 19, 62, 156, 318, 852, 2254, 5262, 13441, 35543, 88772, 226880, 596937, 1539188, 3980364, 10468270, 27410289, 71702956, 189169352, 499529048, 1318355542, 3493861461, 9278408639, 24647900618, 65620808508, 175037591303, 467277998136
Offset: 0

Views

Author

Seiichi Manyama, Sep 16 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(n-2*k-1, n-3*k)*binomial(n+2*k+1, k)/(n+2*k+1));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k-1,n-3*k) * binomial(n+2*k+1,k) / (n+2*k+1).

A366053 Expansion of (1/x) * Series_Reversion( x*(1-x)^4/(1-x+x^3) ).

Original entry on oeis.org

1, 3, 15, 92, 628, 4579, 34917, 275041, 2220472, 18275896, 152780718, 1293657534, 11072033677, 95629771059, 832460471465, 7296161486583, 64331378963164, 570228657335744, 5078345448484216, 45418278349485960, 407749837317844851, 3673300856466182388
Offset: 0

Views

Author

Seiichi Manyama, Sep 27 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(n+1, k)*binomial(4*n-2*k+2, n-3*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(n+1,k) * binomial(4*n-2*k+2,n-3*k).
Showing 1-10 of 13 results. Next