A114509 Number of Dyck paths of semilength n having no ascents of length 4.
1, 1, 2, 5, 13, 37, 111, 345, 1104, 3611, 12016, 40548, 138414, 477076, 1657956, 5802920, 20436910, 72369903, 257518806, 920333307, 3302003826, 11888979066, 42944410207, 155576009845, 565127618392, 2057903975752, 7510967300206
Offset: 0
Keywords
Examples
a(4) = 13 because among the Catalan(4)=14 Dyck paths of semilength 4 only UUUUDDDD has an ascent of length 4 (here U=(1,1), D=(1,-1)).
Programs
-
Maple
Order:=35: Y:=solve(series((Y-Y^2)/(1-Y^4+Y^5),Y)=z,Y): seq(coeff(Y,z^n),n=1..30); #(Y=zG)
-
Maxima
a114509(n):= 1/n*sum(binomial(n,j)*binomial(5*j-3*n-2,j-1)* (-1)^(n-j),j,ceiling((3*n+2)/5),n); /* Works for n > 0. Returns a(n-1). Vladimir Kruchinin, Mar 07 2011 */
Formula
G.f.: G=G(z) satisfies z^5*G^5-z^4*G^4+zG^2-G+1=0.
a(n) = (1/n)*sum(j=ceiling((3*n+2)/5)..n, C(n,j)*C(5*j-3*n-2,j-1) * (-1)^(n-j)), n>0. [Vladimir Kruchinin, Mar 07 2011]
Comments