A114507 Number of Dyck paths of semilength n having no ascents of length 3.
1, 1, 2, 4, 10, 27, 79, 240, 750, 2387, 7711, 25214, 83315, 277799, 933596, 3159187, 10755190, 36811479, 126594819, 437220744, 1515844359, 5273760446, 18406122609, 64426136558, 226108087891, 795486834627, 2804993559426, 9911529800630, 35090946422404, 124462137097349
Offset: 0
Keywords
Examples
a(3) = 4 because we have UDUDUD, UDUUDD, UUDDUD and UUDUDD, where U=(1,1), D=(1,-1).
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
Programs
-
Maple
Order:=36: Y:=solve(series((Y-Y^2)/(1-Y^3+Y^4),Y)=z,Y): seq(coeff(Y,z^n),n=1..32); #(Y=zG)
-
Maxima
a114507(n):= 1/n*sum(binomial(n,j)*binomial(4*j-2*n-2, j-1) *(-1)^(n-j),j,ceiling((n+1)/2),n); /* Works for n > 0. Returns a(n-1). Vladimir Kruchinin, Mar 07 2011 */
-
PARI
a(n)={n++; sum(j=n\2+1, n, binomial(n, j)*binomial(4*j-2*n-2, j-1)*(-1)^(n-j))/n} \\ Andrew Howroyd, Jan 24 2025
Formula
G.f. G satisfies z^4*G^4-z^3*G^3+zG^2-G+1=0.
a(n-1) = 1/n*sum(j=ceiling((n+1)/2)..n, binomial(n,j)*binomial(4*j-2*n-2,j-1)*(-1)^(n-j)) n>0. - Vladimir Kruchinin, Mar 07 2011
D-finite with recurrence 2*n*(26405927*n-73197215)*(2*n+3)*(n+1)*a(n) +2*n*(2*n+1)*(26405927*n^2-273126414*n+480676927)*a(n-1) +4*(-793701648*n^4+4928830819*n^3-11073984912*n^2+10499531162*n-3092762541)*a(n-2) +2*(375778330*n^4-3447814000*n^3+22123257551*n^2-60324066977*n+51211836006)*a(n-3) +2*(12664700570*n^4-145150764350*n^3+621947195977*n^2-1179232268341*n+833841845214)*a(n-4) -3*(n-4)*(11017381441*n^3-111829680906*n^2+390445674963*n-461862831838)*a(n-5) -(n-4)*(n-5)*(30888861033*n^2-148676625095*n+156786419682)*a(n-6) +3206*(n-5)*(n-6)*(18970222*n-55906401)*(n-4)*a(n-7)=0. - R. J. Mathar, Jul 26 2022
Extensions
a(27) onwards from Andrew Howroyd, Jan 24 2025
Comments