cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A114507 Number of Dyck paths of semilength n having no ascents of length 3.

Original entry on oeis.org

1, 1, 2, 4, 10, 27, 79, 240, 750, 2387, 7711, 25214, 83315, 277799, 933596, 3159187, 10755190, 36811479, 126594819, 437220744, 1515844359, 5273760446, 18406122609, 64426136558, 226108087891, 795486834627, 2804993559426, 9911529800630, 35090946422404, 124462137097349
Offset: 0

Views

Author

Emeric Deutsch, Dec 03 2005

Keywords

Comments

Also number of ordered trees with n edges that have no vertices of outdegree 3.

Examples

			a(3) = 4 because we have UDUDUD, UDUUDD, UUDDUD and UUDUDD, where U=(1,1), D=(1,-1).
		

Crossrefs

Programs

  • Maple
    Order:=36: Y:=solve(series((Y-Y^2)/(1-Y^3+Y^4),Y)=z,Y): seq(coeff(Y,z^n),n=1..32); #(Y=zG)
  • Maxima
    a114507(n):= 1/n*sum(binomial(n,j)*binomial(4*j-2*n-2, j-1) *(-1)^(n-j),j,ceiling((n+1)/2),n); /* Works for n > 0. Returns a(n-1). Vladimir Kruchinin, Mar 07 2011 */
    
  • PARI
    a(n)={n++; sum(j=n\2+1, n, binomial(n, j)*binomial(4*j-2*n-2, j-1)*(-1)^(n-j))/n} \\ Andrew Howroyd, Jan 24 2025

Formula

G.f. G satisfies z^4*G^4-z^3*G^3+zG^2-G+1=0.
a(n-1) = 1/n*sum(j=ceiling((n+1)/2)..n, binomial(n,j)*binomial(4*j-2*n-2,j-1)*(-1)^(n-j)) n>0. - Vladimir Kruchinin, Mar 07 2011
D-finite with recurrence 2*n*(26405927*n-73197215)*(2*n+3)*(n+1)*a(n) +2*n*(2*n+1)*(26405927*n^2-273126414*n+480676927)*a(n-1) +4*(-793701648*n^4+4928830819*n^3-11073984912*n^2+10499531162*n-3092762541)*a(n-2) +2*(375778330*n^4-3447814000*n^3+22123257551*n^2-60324066977*n+51211836006)*a(n-3) +2*(12664700570*n^4-145150764350*n^3+621947195977*n^2-1179232268341*n+833841845214)*a(n-4) -3*(n-4)*(11017381441*n^3-111829680906*n^2+390445674963*n-461862831838)*a(n-5) -(n-4)*(n-5)*(30888861033*n^2-148676625095*n+156786419682)*a(n-6) +3206*(n-5)*(n-6)*(18970222*n-55906401)*(n-4)*a(n-7)=0. - R. J. Mathar, Jul 26 2022

Extensions

a(27) onwards from Andrew Howroyd, Jan 24 2025

A114508 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n and having k ascents of length 4 (0<=k<=floor(n/4)). Also number of ordered trees with n edges which have k vertices of outdegree 4.

Original entry on oeis.org

1, 1, 2, 5, 13, 1, 37, 5, 111, 21, 345, 84, 1104, 322, 4, 3611, 1215, 36, 12016, 4555, 225, 40548, 17028, 1210, 138414, 63636, 5940, 22, 477076, 238004, 27534, 286, 1657956, 891268, 122850, 2366, 5802920, 3342375, 533625, 15925, 20436910, 12552580
Offset: 0

Views

Author

Emeric Deutsch, Dec 03 2005

Keywords

Comments

Row n has 1+floor(n/4) terms. Row sums yield the Catalan numbers (A000108). Column 0 yields A114509. Sum(kT(n,k),k=0..floor(n/4))=binomial(2n-5,n-4) (A002054).

Examples

			T(5,1)=5 because we have UDUUUUDDDD, UUUDDDDUD, UUUUDDDUDD, UUUUDDUDDD and UUUUDUDDDD, where U=(1,1), D=(1,-1).
Triangle starts:
1;
1;
2;
5;
13,1;
37,5;
111,21;
345,84;
1104,322,4;
3611,1215,36;
		

Crossrefs

Programs

  • Maple
    Order:=20: Y:=solve(series((Y-Y^2)/(1-(1-t)*Y^4+(1-t)*Y^5),Y)=z,Y): 1; for n from 1 to 17 do seq(coeff(t*coeff(Y,z^(n+1)),t^j),j=1..1+floor(n/4)) od; # yields sequence in triangular form

Formula

G.f. G=G(t, z) satisfies (1-t)z^5*G^5-(1-t)z^4*G^4+zG^2-G+1=0.
Showing 1-2 of 2 results.