cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114515 Number of peaks in all hill-free Dyck paths of semilength n (a Dyck path is hill-free if it has no peaks at level 1).

Original entry on oeis.org

0, 0, 1, 3, 12, 45, 171, 651, 2488, 9540, 36690, 141482, 546864, 2118207, 8219967, 31952115, 124389552, 484908408, 1892657934, 7395597354, 28928182440, 113260606074, 443827115886, 1740592240638, 6831289801872, 26829201570600
Offset: 0

Views

Author

Emeric Deutsch, Dec 04 2005

Keywords

Examples

			a(3)=3 because in the two hill-free Dyck paths of semilength 3, namely U(UD)(UD)D and UU(UD)DD, we have altogether 3 peaks (shown between parentheses).
		

Crossrefs

Programs

  • Maple
    C:=(1-sqrt(1-4*z))/2/z: G:=1/(1-z*C+z)^2*z^2*C/(1-2*z*C): Gser:=series(G,z=0,32): 0, seq(coeff(Gser,z^n),n=1..28);
  • Mathematica
    CoefficientList[Series[1/(1-x*(1-Sqrt[1-4*x])/2/x+x)^2*x^2*(1-Sqrt[1-4*x])/2/x/(1-2*x*(1-Sqrt[1-4*x])/2/x), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
    a[n_] := If[n<=1, 0, Binomial[2n-1, n-2] Hypergeometric2F1[2, 2-n, 1-2n, -1]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Oct 22 2016, after Vladimir Kruchinin *)
  • Maxima
    a(n):=sum(k*(-1)^(k+1)*binomial(2*n-k,n-k-1),k,1,n); /*  Vladimir Kruchinin, Oct 22 2016 */
    
  • PARI
    my(x='x + O('x^50)); concat([0,0], Vec((2*x*(1-sqrt(1-4*x)))/(sqrt(1-4*x)*(1 + 2*x + sqrt(1-4*x))^2))) \\ G. C. Greubel, Feb 08 2017

Formula

a(n) = Sum_{k=0..n-1} k*A100754(n,k).
G.f.: z^2*C/((1-z*C+z)^2*(1-2*z*C)), where C=(1-sqrt(1-4*z))/(2*z) is the Catalan function.
a(n) ~ 2^(2*n+1)/(9*sqrt(Pi*n)). - Vaclav Kotesovec, Mar 20 2014
a(n) = Sum_{k=1..n} (k*(-1)^(k+1)*binomial(2*n-k,n-k-1)). - Vladimir Kruchinin, Oct 22 2016
D-finite with recurrence 2*(n+1)*a(n) -9*n*a(n-1) -3*n*a(n-2) +5*(5*n-16)*a(n-3) +6*(2*n-5)*a(n-4)=0. - R. J. Mathar, Jul 22 2022