A114548 Numbers k such that k-th heptagonal number is 3-almost prime.
3, 8, 11, 19, 20, 25, 28, 37, 38, 43, 52, 58, 59, 67, 68, 70, 77, 82, 83, 85, 86, 89, 92, 98, 106, 110, 116, 124, 130, 131, 133, 134, 137, 139, 142, 149, 157, 161, 169, 172, 179, 181, 182, 185, 188, 190, 193, 202, 206, 209, 211, 214, 217, 227, 233, 238, 244
Offset: 1
Examples
a(1) = 3 because Hep(3) = 3*(5*3-3)/2 = 18 = 2 * 3^2 is 3-almost prime. a(2) = 8 because Hep(8) = 8*(5*8-3)/2 = 148 = 2^2 * 37 is 3-almost prime. a(3) = 11 because Hep(11) = 11*(5*11-3)/2 = 286 = 2 * 11 * 13 is 3-almost prime. a(17) = 82 because Hep(82) = 82*(5*82-3)/2 = 16687 = 11 * 37 * 41 is 3-almost prime (and 3-brilliant).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harvey P. Dale)
- Eric Weisstein's World of Mathematics, Almost Prime.
- Eric Weisstein's World of Mathematics, Heptagonal Number.
Programs
-
Mathematica
Select[Range[400], PrimeOmega[# (5 # - 3)/2] == 3 &] (* Giovanni Resta, Jun 14 2016 *) Select[Range[250],PrimeOmega[PolygonalNumber[7,#]]==3&] (* Harvey P. Dale, Sep 04 2020 *)
Formula
Extensions
Corrected and extended by Giovanni Resta, Jun 14 2016