A114551 Continued fraction expansion of the constant (A114550) equal to Sum_{n>=0} 1/A112373(n) such that the partial quotients satisfy a(2n) = A112373(n) for n > 0 and a(2n+1) = A112373(n+1)/A112373(n) for n >= 0.
2, 1, 1, 2, 2, 6, 12, 78, 936, 73086, 68408496, 4999703411742, 342022190843338960032, 1710009514450915230711940280907486, 584861200495456320274313200204390612579749188443599552
Offset: 0
Examples
2.584401724019776724812076147153331342112382090467969... = Sum_{n>=0} 1/A112373(n) = 1/1 + 1/1 + 1/2 + 1/12 + 1/936 + 1/68408496 + ... = [2;1,1,2,2,6,12,78,936,73086,68408496,...] (continued fraction). The recurrence of partial quotients is demonstrated by: (odd-index) a(7) = 78 = a(6)*a(5) + a(5) = 12*6 + 6; (even-index) a(8) = 936 = a(7)*a(6) = 78*12.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..20
- Taras Goy and Mark Shattuck, Determinant Formulas of Some Hessenberg Matrices with Jacobsthal Entries Jacobsthal Entries, Applications and Appl. Math. (2021) Vol. 16, Issue 1, Art. 10.
- A. Hone, Curious continued fractions, nonlinear recurrences and transcendental numbers, arXiv:1507.00063 [math.NT], 2015 and J. Int. Seq. 18 (2015) # 15.8.4.
Programs
-
Mathematica
a[0] = 2; a[1] = a[2] = 1; a[n_] := a[n] = a[n-1] a[n-2] + Mod[n, 2] a[n-2]; a /@ Range[0, 14] (* Jean-François Alcover, Oct 01 2019 *)
-
PARI
a(n)=if(n<0,0,if(n<3,[2,1,1][n+1],a(n-1)*a(n-2)+(n%2)*a(n-2)))
Formula
a(2n) = a(2n-1)*a(2n-2) for n>=2, a(2n+1) = a(2n)*a(2n-1) + a(2n-1) for n>=1, with a(0)=2, a(1)=a(2)=1. - Jeffrey Shallit
Comments