A114556 Numbers k such that the k-th heptagonal number is 5-almost prime.
7, 16, 23, 30, 32, 36, 42, 45, 54, 69, 78, 79, 80, 84, 88, 90, 93, 95, 100, 102, 104, 112, 115, 117, 140, 143, 151, 153, 165, 170, 174, 176, 184, 186, 191, 200, 203, 210, 213, 228, 232, 234, 245, 250, 259, 271, 273, 282, 287, 296, 306, 308, 310, 311, 318, 319
Offset: 1
Examples
a(1) = 7 because Hep(7) = 7*(5*7-3)/2 = 112 = 2^4 * 7 is 5-almost prime [also 112 = Hep(7) = Hep(Hep(2)) is an iterated heptagonal number]. a(2) = 16 because Hep(16) = 16*(5*16-3)/2 = 616 = 2^3 * 7 * 11 is 5-almost prime. a(3) = 23 because Hep(23) = 23*(5*23-3)/2 = 1288 = 2^3 * 7 * 23. a(18) = 100 because Hep(100) = 100*(5*100-3)/2 = 24850 = 2 * 5^2 * 7 * 71. a(21) = 112 because Hep(112) = 112*(5*112-3)/2 = 31192 = 2^3 * 7 * 557 [also 31192 = Hep(112) = Hep(Hep(7)) = Hep(Hep(Hep(2))) is an iterated heptagonal number].
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harvey P. Dale)
- Eric Weisstein's World of Mathematics, Almost Prime.
- Eric Weisstein's World of Mathematics, Heptagonal Number.
Programs
-
Mathematica
Select[Range[400], PrimeOmega[# (5 # - 3)/2] == 5 &] (* Giovanni Resta, Jun 14 2016 *) Select[Range[400],PrimeOmega[PolygonalNumber[7,#]]==5&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 22 2020 *)
Formula
Extensions
Corrected and extended by Giovanni Resta, Jun 14 2016