cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114583 Triangle read by rows: T(n,k) is the number of Motzkin paths of length n and having k UHD's, where U=(1,1),H=(1,0),D=(1,-1) (0<=k<=floor(n/3)).

Original entry on oeis.org

1, 1, 2, 3, 1, 7, 2, 15, 6, 36, 14, 1, 85, 39, 3, 209, 102, 12, 517, 280, 37, 1, 1303, 758, 123, 4, 3312, 2085, 381, 20, 8510, 5730, 1194, 76, 1, 22029, 15849, 3657, 295, 5, 57447, 43914, 11187, 1056, 30, 150709, 122090, 33903, 3734, 135, 1, 397569, 340104
Offset: 0

Views

Author

Emeric Deutsch, Dec 09 2005

Keywords

Comments

Row n contains 1+floor(n/3) terms. Row sums are the Motzkin numbers (A001006). Column 1 yields A114584. Sum(k*T(n,k),k=0..floor(n/3))=A005717(n-2).

Examples

			T(5,1)=6 because we have HH(UHD), UD(UHD), (UHD)HH, (UHD)UD, H(UHD)H and U(UHD)D, where U=(1,1),H=(1,0),D=(1,-1) (the UHD's are shown between parentheses).
Triangle begins:
   1;
   1;
   2;
   3,  1;
   7,  2;
  15,  6;
  36, 14, 1;
  ...
		

Crossrefs

Programs

  • Maple
    G:=(1-z-t*z^3+z^3-sqrt((1-3*z+z^3-t*z^3)*(1+z+z^3-t*z^3)))/2/z^2: Gser:=simplify(series(G,z=0,20)): P[0]:=1: for n from 1 to 17 do P[n]:=sort(coeff(Gser,z^n)) od: for n from 0 to 17 do seq(coeff(t*P[n],t^j),j=1..1+floor(n/3)) od; # yields sequence in triangular form
    # second Maple program:
    b:= proc(x, y, t) option remember; expand(`if`(y<0 or y>x, 0,
         `if`(x=0, 1, b(x-1, y, `if`(t=1, 2, 0))+b(x-1, y-1, 0)*
         `if`(t=2, z, 1)+b(x-1, y+1, 1))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(n, 0$2)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Feb 01 2019
  • Mathematica
    CoefficientList[#, t]& /@ CoefficientList[(1 - z - t z^3 + z^3 - Sqrt[(1 - 3z + z^3 - t z^3)(1 + z + z^3 - t z^3)])/2/z^2 + O[z]^17, z] // Flatten (* Jean-François Alcover, Aug 07 2018 *)

Formula

G.f.=G=G(t, z) satisfies G=1+zG+z^2*G(tz-z+G).