cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A114584 Number of Motzkin paths of length n having no UHD's (U=(1,1), H=(1,0), D=(1,-1)).

Original entry on oeis.org

1, 1, 2, 3, 7, 15, 36, 85, 209, 517, 1303, 3312, 8510, 22029, 57447, 150709, 397569, 1053822, 2805518, 7498035, 20110254, 54110386, 146021880, 395114304, 1071772322, 2913900196, 7939004648, 21672609566, 59272260791, 162380575451
Offset: 0

Views

Author

Emeric Deutsch, Dec 09 2005

Keywords

Comments

Column 0 of A114583.

Examples

			a(4)=7 because the only counterexamples among the 9 Motzkin paths of length 4 are HUHD and UHDH.
		

Crossrefs

Cf. A114583.

Programs

  • Maple
    G:=(1-z+z^3-sqrt((1+z+z^3)*(1-3*z+z^3)))/2/z^2: Gser:=series(G,z=0,35): 1,seq(coeff(Gser,z^n),n=1..32);
  • Mathematica
    a[n_] := Sum[Binomial[n, i] Binomial[n - i, i] HypergeometricPFQ[{(2 i - n)/3, (2 i - n + 1)/3, (2 i - n + 2)/ 3}, {(1 - n)/2, -n/2}, 27/4] /(i + 1), {i, 0, n /2}];
    Table[a[n], {n, 0, 29}] (* Peter Luschny, May 05 2018 *)
  • Maxima
    a(n):=sum(sum((-1)^j*binomial(n-2*j,i)*binomial(n-2*j-2*i,j)*binomial(n-2*j-i,i),j,0,(n)/2-i)/(i+1),i,0,(n)/2); /* Vladimir Kruchinin, May 05 2018 */
    
  • PARI
    x='x+O('x^99); Vec((1-x+x^3-((1+x+x^3)*(1-3*x+x^3))^(1/2))/(2*x^2)) \\ Altug Alkan, May 05 2018

Formula

G.f.: (1-z+z^3-sqrt((1+z+z^3)(1-3z+z^3)))/(2z^2).
Conjecture: +(n+2)*a(n) +(n+2)*a(n-1) +3*(-3*n+2)*a(n-2) +(-7*n+13)*a(n-3) +(4*n-13)*a(n-4) +6*(-n+5)*a(n-5) +(n-7)*a(n-6) +3*(n-8)*a(n-7)=0. - R. J. Mathar, Feb 16 2018
a(n) = Sum_{i=0..n/2} Sum_{j=0..n/2-i} (-1)^j*C(n-2*j,i)*C(n-2*j-2*i,j)*C(n-2*j-i,i)/(i+1). - Vladimir Kruchinin, May 05 2018
a(n) = a(n-1) - a(n-3) + Sum_{i=0..n-2} a(i)*a(n-2-i), a(0)=1. - Vladimir Kruchinin, May 05 2018
a(n) = Sum_{i=0..n/2} binomial(n,i)*binomial(n-i,i)*hypergeom([(2*i - n)/3, (2*i - n + 1)/3, (2*i - n + 2)/ 3], [(1 - n)/2, -n/2], 27/4) / (i + 1). - Peter Luschny, May 05 2018
G.f. A(x) satisfies: A(x) = (1 + x^2 * A(x)^2) / (1 - x + x^3). - Ilya Gutkovskiy, Jul 20 2021
Showing 1-1 of 1 results.