cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114592 Sum_{n>=1} a(n)/n^s = Product_{k>=2} (1 - 1/k^s).

Original entry on oeis.org

1, -1, -1, -1, -1, 0, -1, 0, -1, 0, -1, 1, -1, 0, 0, 0, -1, 1, -1, 1, 0, 0, -1, 1, -1, 0, 0, 1, -1, 1, -1, 1, 0, 0, 0, 1, -1, 0, 0, 1, -1, 1, -1, 1, 1, 0, -1, 1, -1, 1, 0, 1, -1, 1, 0, 1, 0, 0, -1, 1, -1, 0, 1, 0, 0, 1, -1, 1, 0, 1, -1, 1, -1, 0, 1, 1, 0, 1
Offset: 1

Views

Author

Leroy Quet, Dec 11 2005

Keywords

Comments

For n >= 2, Sum_{k|n} A001055(n/k) * a(k) = 0. A114591(n) = Sum_{k|n} a(k).
First entry greater than 1 in absolute value is a(360) = -2. - Gus Wiseman, Sep 15 2018

Examples

			24 can be factored into distinct integers (each >= 2) as 24; as 4*6, 3*8 and 2*12; and as 2*3*4. (A045778(24) = 5).
So a(24) = (-1)^1 + 3*(-1)^2 + (-1)^3 = 1, where the 1 exponent is due to the 1 factor of the 24 = 24 factorization and the 2 exponent is due to the 3 cases of 2 factors each of the 24 = 4*6 = 3*8 = 2*12 factorizations and the 3 exponent is due to the 24 = 2*3*4 factorization.
		

Crossrefs

Programs

  • Mathematica
    strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    Table[Sum[(-1)^Length[f],{f,strfacs[n]}],{n,100}] (* Gus Wiseman, Sep 15 2018 *)
  • PARI
    A114592aux(n, k) = if(1==n, 1, sumdiv(n, d, if(d > 1 && d <= k && d < n, (-1)*A114592aux(n/d, d-1))) - (n<=k)); \\ After code in A045778.
    A114592(n) = A114592aux(n,n); \\ Antti Karttunen, Jul 23 2017

Formula

a(1) = 1; for n>= 2, a(n) = sum, over ways to factor n into any number of distinct integers >= 2, of (-1)^(number of integers in a factorization). (See example.)

Extensions

More terms from Antti Karttunen, Jul 23 2017