A114592 Sum_{n>=1} a(n)/n^s = Product_{k>=2} (1 - 1/k^s).
1, -1, -1, -1, -1, 0, -1, 0, -1, 0, -1, 1, -1, 0, 0, 0, -1, 1, -1, 1, 0, 0, -1, 1, -1, 0, 0, 1, -1, 1, -1, 1, 0, 0, 0, 1, -1, 0, 0, 1, -1, 1, -1, 1, 1, 0, -1, 1, -1, 1, 0, 1, -1, 1, 0, 1, 0, 0, -1, 1, -1, 0, 1, 0, 0, 1, -1, 1, 0, 1, -1, 1, -1, 0, 1, 1, 0, 1
Offset: 1
Keywords
Examples
24 can be factored into distinct integers (each >= 2) as 24; as 4*6, 3*8 and 2*12; and as 2*3*4. (A045778(24) = 5). So a(24) = (-1)^1 + 3*(-1)^2 + (-1)^3 = 1, where the 1 exponent is due to the 1 factor of the 24 = 24 factorization and the 2 exponent is due to the 3 cases of 2 factors each of the 24 = 4*6 = 3*8 = 2*12 factorizations and the 3 exponent is due to the 24 = 2*3*4 factorization.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]]; Table[Sum[(-1)^Length[f],{f,strfacs[n]}],{n,100}] (* Gus Wiseman, Sep 15 2018 *)
-
PARI
A114592aux(n, k) = if(1==n, 1, sumdiv(n, d, if(d > 1 && d <= k && d < n, (-1)*A114592aux(n/d, d-1))) - (n<=k)); \\ After code in A045778. A114592(n) = A114592aux(n,n); \\ Antti Karttunen, Jul 23 2017
Formula
a(1) = 1; for n>= 2, a(n) = sum, over ways to factor n into any number of distinct integers >= 2, of (-1)^(number of integers in a factorization). (See example.)
Extensions
More terms from Antti Karttunen, Jul 23 2017
Comments