cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A319238 Positions of zeros in A114592, the list of coefficients in the expansion of Product_{n > 1} (1 - 1/n^s).

Original entry on oeis.org

6, 8, 10, 14, 15, 16, 21, 22, 26, 27, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 64, 65, 69, 74, 77, 81, 82, 85, 86, 87, 91, 93, 94, 95, 96, 106, 111, 115, 118, 119, 120, 122, 123, 125, 129, 133, 134, 141, 142, 143, 144, 145, 146, 155, 158, 159, 160, 161, 166
Offset: 1

Views

Author

Gus Wiseman, Sep 15 2018

Keywords

Comments

From Tian Vlasic, Jan 01 2022: (Start)
Numbers that have an equal number of even- and odd-length unordered factorizations into distinct factors.
For prime p, by the pentagonal number theorem, p^k is a term if and only if k is in A090864.
For primes p and q, p*q^k is a term if and only if k = A000326(m)+N with 0 <= N < m. (End)

Examples

			16 = 2*8 = 4*4 = 2*2*4 = 2*2*2*2 has an equal number of even-length factorizations and odd-length factorizations into distinct factors (1). - _Tian Vlasic_, Dec 31 2021
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Join@@Position[Table[Sum[(-1)^Length[f],{f,Select[facs[n],UnsameQ@@#&]}],{n,100}],0]

A319237 Positions of nonzero terms in A114592, the list of coefficients in the expansion of Product_{n > 1} (1 - 1/n^s).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 11, 12, 13, 17, 18, 19, 20, 23, 24, 25, 28, 29, 30, 31, 32, 36, 37, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 60, 61, 63, 66, 67, 68, 70, 71, 72, 73, 75, 76, 78, 79, 80, 83, 84, 88, 89, 90, 92, 97, 98, 99, 100, 101, 102
Offset: 1

Views

Author

Gus Wiseman, Sep 15 2018

Keywords

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Join@@Position[Table[Sum[(-1)^Length[f],{f,Select[facs[n],UnsameQ@@#&]}],{n,100}],_Integer?(Abs[#]>0&)]

A045778 Number of factorizations of n into distinct factors greater than 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 5, 1, 2, 2, 3, 1, 5, 1, 3, 2, 2, 2, 5, 1, 2, 2, 5, 1, 5, 1, 3, 3, 2, 1, 7, 1, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 9, 1, 2, 3, 4, 2, 5, 1, 3, 2, 5, 1, 9, 1, 2, 3, 3, 2, 5, 1, 7, 2, 2, 1, 9, 2, 2, 2, 5, 1, 9, 2, 3, 2, 2, 2, 10, 1, 3, 3, 5, 1, 5, 1, 5
Offset: 1

Views

Author

Keywords

Comments

This sequence depends only on the prime signature of n and not on the actual value of n.
Also the number of strict multiset partitions (sets of multisets) of the prime factors of n. - Gus Wiseman, Dec 03 2016
Number of sets of integers greater than 1 whose product is n. - Antti Karttunen, Feb 20 2024

Examples

			24 can be factored as 24, 2*12, 3*8, 4*6, or 2*3*4, so a(24) = 5. The factorization 2*2*6 is not permitted because the factor 2 is present twice. a(1) = 1 represents the empty factorization.
		

Crossrefs

Cf. A036469, A114591, A114592, A316441 (Dirichlet inverse).
Cf. A156648 (2*Dgf at s=2), A073017 (2*Dgf at s=3), A258870 (2*Dgf at s=4).
Cf. also A069626 (Number of sets of integers > 1 whose least common multiple is n).
Cf. A287549 (partial sums).

Programs

  • APL
    ⍝ Dyalog dialect
    divisors ← {ð←⍵{(0=⍵|⍺)/⍵}⍳⌊⍵*÷2 ⋄ 1=⍵:ð ⋄ ð, (⍵∘÷)¨(⍵=(⌊⍵*÷2)*2)↓⌽ð}
    A045778 ← { D←1↓divisors(⍵) ⋄ T←(⍴D)⍴2 ⋄ +/⍵⍷{×/D/⍨T⊤⍵}¨(-∘1)⍳2*⍴D } ⍝ (simple, but a memory hog)
    A045778 ← { ⍺←⌽divisors(⍵) ⋄ 1=⍵:1 ⋄ 0=≢⍺:0 ⋄ R←⍺↓⍨⍺⍳⍵∘÷ ⋄ Ð←{⍺/⍨0=⍺|⍵} ⋄ +/(((R)Ð⊢)∇⊢)¨(⍵∘÷)¨⍺ } ⍝ (more efficient) - Antti Karttunen, Feb 20 2024
  • Maple
    with(numtheory):
    b:= proc(n, k) option remember;
          `if`(n>k, 0, 1) +`if`(isprime(n), 0,
          add(`if`(d>k, 0, b(n/d, d-1)), d=divisors(n) minus {1, n}))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=1..120);  # Alois P. Heinz, May 26 2013
  • Mathematica
    gd[m_, 1] := 1; gd[1, n_] := 0; gd[1, 1] := 1; gd[0, n_] := 0; gd[m_, n_] := gd[m, n] = Total[gd[# - 1, n/#] & /@ Select[Divisors[n], # <= m &]]; Array[ gd[#, #] &, 100]  (* Alexander Adam, Dec 28 2012 *)
  • PARI
    v=vector(100,k,k==1); for(n=2,#v, v+=dirmul(v,vector(#v,k,k==n)) ); v /* Max Alekseyev, Jul 16 2014 */
    
  • PARI
    A045778(n, k=n) = ((n<=k) + sumdiv(n, d, if(d > 1 && d <= k && d < n, A045778(n/d, d-1)))); \\ After Alois P. Heinz's Maple-code by Antti Karttunen, Jul 23 2017, edited Feb 20 2024
    
  • PARI
    A045778(n, m=n) = if(1==n, 1, sumdiv(n,d,if((d>1)&&(d<=m),A045778(n/d,d-1)))); \\ Antti Karttunen, Feb 20 2024
    
  • Python
    from sympy.core.cache import cacheit
    from sympy import divisors, isprime
    @cacheit
    def b(n, k): return (0 if n>k else 1) + (0 if isprime(n) else sum(0 if d>k else b(n//d, d - 1) for d in divisors(n)[1:-1]))
    def a(n): return b(n, n)
    print([a(n) for n in range(1, 121)]) # Indranil Ghosh, Aug 19 2017, after Maple code
    

Formula

Dirichlet g.f.: Product_{n>=2} (1 + 1/n^s).
Let p and q be two distinct prime numbers and k a natural number. Then a(p^k) = A000009(k) and a(p^k*q) = A036469(k). - Alexander Adam, Dec 28 2012
Let p_i with 1<=i<=k k distinct prime numbers. Then a(Product_{i=1..k} p_i) = A000110(k). - Alexander Adam, Dec 28 2012

Extensions

Edited by Franklin T. Adams-Watters, Jun 04 2009

A316441 a(n) = Sum (-1)^k where the sum is over all factorizations of n into factors > 1 and k is the number of factors.

Original entry on oeis.org

1, -1, -1, 0, -1, 0, -1, -1, 0, 0, -1, 0, -1, 0, 0, 1, -1, 0, -1, 0, 0, 0, -1, 1, 0, 0, -1, 0, -1, 1, -1, -1, 0, 0, 0, 1, -1, 0, 0, 1, -1, 1, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 1, 0, 1, 0, 0, -1, 1, -1, 0, 0, 1, 0, 1, -1, 0, 0, 1, -1, 0, -1, 0, 0, 0, 0, 1, -1
Offset: 1

Views

Author

Gus Wiseman, Jul 03 2018

Keywords

Comments

First term greater than 1 in absolute value is a(256) = 2.

Examples

			The factorizations of 24 are (2*2*2*3), (2*2*6), (2*3*4), (2*12), (3*8), (4*6), (24); so a(24) = 1 - 2 + 3 - 1 = 1.
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Sum[(-1)^Length[f],{f,facs[n]}],{n,200}]
  • PARI
    A316441(n, m=n, k=0) = if(1==n, (-1)^k, my(s=0); fordiv(n, d, if((d>1)&&(d<=m), s += A316441(n/d, d, k+1))); (s)); \\ Antti Karttunen, Sep 08 2018, after Michael B. Porter's code for A001055

Formula

Dirichlet g.f.: Product_{n > 1} 1/(1 + 1/n^s).

Extensions

Secondary offset added by Antti Karttunen, Sep 08 2018

A339701 Dirichlet g.f.: Product_{k>=2} (1 - k^(-s))^2.

Original entry on oeis.org

1, -2, -2, -1, -2, 2, -2, 2, -1, 2, -2, 4, -2, 2, 2, 1, -2, 4, -2, 4, 2, 2, -2, 0, -1, 2, 2, 4, -2, 2, -2, 2, 2, 2, 2, 0, -2, 2, 2, 0, -2, 2, -2, 4, 4, 2, -2, -2, -1, 4, 2, 4, -2, 0, 2, 0, 2, 2, -2, -4, -2, 2, 4, -2, 2, 2, -2, 4, 2, 2, -2, -4, -2, 2, 4, 4, 2, 2, -2, -2
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 13 2020

Keywords

Crossrefs

Formula

a(1) = 1; a(n) = -Sum_{d|n, d < n} A301830(n/d) * a(d).
a(n) = Sum_{d|n} A114592(n/d) * A114592(d).
a(p^k) = A002107(k) for prime p.

A339702 Dirichlet g.f.: Product_{k>=2} (1 - k^(-s))^3.

Original entry on oeis.org

1, -3, -3, 0, -3, 6, -3, 5, 0, 6, -3, 6, -3, 6, 6, 0, -3, 6, -3, 6, 6, 6, -3, -9, 0, 6, 5, 6, -3, -3, -3, 0, 6, 6, 6, -9, -3, 6, 6, -9, -3, -3, -3, 6, 6, 6, -3, -9, 0, 6, 6, 6, -3, -9, 6, -9, 6, 6, -3, -21, -3, 6, 6, -7, 6, -3, -3, 6, 6, -3, -3, -12, -3, 6, 6, 6, 6, -3, -3, -9
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 13 2020

Keywords

Crossrefs

Formula

a(1) = 1; a(n) = -Sum_{d|n, d < n} A339318(n/d) * a(d).
a(p^k) = A010816(k) for prime p.

A339703 Dirichlet g.f.: Product_{k>=2} (1 - k^(-s))^4.

Original entry on oeis.org

1, -4, -4, 2, -4, 12, -4, 8, 2, 12, -4, 4, -4, 12, 12, -5, -4, 4, -4, 4, 12, 12, -4, -28, 2, 12, 8, 4, -4, -20, -4, -4, 12, 12, 12, -26, -4, 12, 12, -28, -4, -20, -4, 4, 4, 12, -4, -8, 2, 4, 12, 4, -4, -28, 12, -28, 12, 12, -4, -44, -4, 12, 4, -10, 12, -20, -4, 4, 12, -20
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 13 2020

Keywords

Crossrefs

Formula

a(1) = 1; a(n) = -Sum_{d|n, d < n} A339319(n/d) * a(d).
a(p^k) = A000727(k) for prime p.

A339704 Dirichlet g.f.: Product_{k>=2} (1 - k^(-s))^5.

Original entry on oeis.org

1, -5, -5, 5, -5, 20, -5, 10, 5, 20, -5, -5, -5, 20, 20, -15, -5, -5, -5, -5, 20, 20, -5, -55, 5, 20, 10, -5, -5, -55, -5, -6, 20, 20, 20, -45, -5, 20, 20, -55, -5, -55, -5, -5, -5, 20, -5, 20, 5, -5, 20, -5, -5, -55, 20, -55, 20, 20, -5, -55, -5, 20, -5, -5, 20, -55, -5, -5, 20, -55
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 13 2020

Keywords

Crossrefs

Formula

a(1) = 1; a(n) = -Sum_{d|n, d < n} A339320(n/d) * a(d).
a(p^k) = A000728(k) for prime p.

A339705 Dirichlet g.f.: Product_{k>=2} (1 - k^(-s))^6.

Original entry on oeis.org

1, -6, -6, 9, -6, 30, -6, 10, 9, 30, -6, -24, -6, 30, 30, -30, -6, -24, -6, -24, 30, 30, -6, -84, 9, 30, 10, -24, -6, -114, -6, 0, 30, 30, 30, -54, -6, 30, 30, -84, -6, -114, -6, -24, -24, 30, -6, 96, 9, -24, 30, -24, -6, -84, 30, -84, 30, 30, -6, -24, -6, 30, -24, 11, 30
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 13 2020

Keywords

Crossrefs

Formula

a(1) = 1; a(n) = -Sum_{d|n, d < n} A339321(n/d) * a(d).
a(p^k) = A000729(k) for prime p.

A339706 Dirichlet g.f.: Product_{k>=2} (1 - k^(-s))^7.

Original entry on oeis.org

1, -7, -7, 14, -7, 42, -7, 7, 14, 42, -7, -56, -7, 42, 42, -49, -7, -56, -7, -56, 42, 42, -7, -105, 14, 42, 7, -56, -7, -203, -7, 21, 42, 42, 42, -35, -7, 42, 42, -105, -7, -203, -7, -56, -56, 42, -7, 238, 14, -56, 42, -56, -7, -105, 42, -105, 42, 42, -7, 91, -7, 42, -56, 35, 42
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 13 2020

Keywords

Crossrefs

Formula

a(1) = 1; a(n) = -Sum_{d|n, d < n} A339322(n/d) * a(d).
a(p^k) = A000730(k) for prime p.
Showing 1-10 of 24 results. Next