cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A319240 Positions of zeros in A316441, the list of coefficients in the expansion of Product_{n > 1} 1/(1 + 1/n^s).

Original entry on oeis.org

4, 6, 9, 10, 12, 14, 15, 18, 20, 21, 22, 25, 26, 28, 33, 34, 35, 38, 39, 44, 45, 46, 48, 49, 50, 51, 52, 55, 57, 58, 62, 63, 65, 68, 69, 72, 74, 75, 76, 77, 80, 82, 85, 86, 87, 91, 92, 93, 94, 95, 98, 99, 106, 108, 111, 112, 115, 116, 117, 118, 119, 121, 122
Offset: 1

Views

Author

Gus Wiseman, Sep 15 2018

Keywords

Comments

From Tian Vlasic, Dec 31 2021: (Start)
Numbers that have an equal number of even and odd-length unordered factorizations.
There are infinitely many terms since p^2 is a term for prime p.
Out of all numbers of the form p^k with p prime (listed in A000961), only the numbers of the form p^2 (A001248) are terms.
Out of all numbers of the form p*q^k, p and q prime, only the numbers of the form p*q (A006881), p*q^2 (A054753), p*q^4 (A178739) and p*q^6 (A189987) are terms.
Similar methods can be applied to all prime signatures. (End)

Examples

			12 = 2*6 = 3*4 = 2*2*3 has an equal number of even-length factorizations and odd-length factorizations (2). - _Tian Vlasic_, Dec 09 2021
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Join@@Position[Table[Sum[(-1)^Length[f],{f,facs[n]}],{n,100}],0]

A319239 Positions of nonzero terms in A316441, the list of coefficients in the expansion of Product_{n > 1} 1/(1 + 1/n^s).

Original entry on oeis.org

1, 2, 3, 5, 7, 8, 11, 13, 16, 17, 19, 23, 24, 27, 29, 30, 31, 32, 36, 37, 40, 41, 42, 43, 47, 53, 54, 56, 59, 60, 61, 64, 66, 67, 70, 71, 73, 78, 79, 81, 83, 84, 88, 89, 90, 96, 97, 100, 101, 102, 103, 104, 105, 107, 109, 110, 113, 114, 120, 125, 126, 127, 128
Offset: 1

Views

Author

Gus Wiseman, Sep 15 2018

Keywords

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Join@@Position[Table[Sum[(-1)^Length[f],{f,facs[n]}],{n,100}],_Integer?(Abs[#]>0&)]

A045778 Number of factorizations of n into distinct factors greater than 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 5, 1, 2, 2, 3, 1, 5, 1, 3, 2, 2, 2, 5, 1, 2, 2, 5, 1, 5, 1, 3, 3, 2, 1, 7, 1, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 9, 1, 2, 3, 4, 2, 5, 1, 3, 2, 5, 1, 9, 1, 2, 3, 3, 2, 5, 1, 7, 2, 2, 1, 9, 2, 2, 2, 5, 1, 9, 2, 3, 2, 2, 2, 10, 1, 3, 3, 5, 1, 5, 1, 5
Offset: 1

Views

Author

Keywords

Comments

This sequence depends only on the prime signature of n and not on the actual value of n.
Also the number of strict multiset partitions (sets of multisets) of the prime factors of n. - Gus Wiseman, Dec 03 2016
Number of sets of integers greater than 1 whose product is n. - Antti Karttunen, Feb 20 2024

Examples

			24 can be factored as 24, 2*12, 3*8, 4*6, or 2*3*4, so a(24) = 5. The factorization 2*2*6 is not permitted because the factor 2 is present twice. a(1) = 1 represents the empty factorization.
		

Crossrefs

Cf. A036469, A114591, A114592, A316441 (Dirichlet inverse).
Cf. A156648 (2*Dgf at s=2), A073017 (2*Dgf at s=3), A258870 (2*Dgf at s=4).
Cf. also A069626 (Number of sets of integers > 1 whose least common multiple is n).
Cf. A287549 (partial sums).

Programs

  • APL
    ⍝ Dyalog dialect
    divisors ← {ð←⍵{(0=⍵|⍺)/⍵}⍳⌊⍵*÷2 ⋄ 1=⍵:ð ⋄ ð, (⍵∘÷)¨(⍵=(⌊⍵*÷2)*2)↓⌽ð}
    A045778 ← { D←1↓divisors(⍵) ⋄ T←(⍴D)⍴2 ⋄ +/⍵⍷{×/D/⍨T⊤⍵}¨(-∘1)⍳2*⍴D } ⍝ (simple, but a memory hog)
    A045778 ← { ⍺←⌽divisors(⍵) ⋄ 1=⍵:1 ⋄ 0=≢⍺:0 ⋄ R←⍺↓⍨⍺⍳⍵∘÷ ⋄ Ð←{⍺/⍨0=⍺|⍵} ⋄ +/(((R)Ð⊢)∇⊢)¨(⍵∘÷)¨⍺ } ⍝ (more efficient) - Antti Karttunen, Feb 20 2024
  • Maple
    with(numtheory):
    b:= proc(n, k) option remember;
          `if`(n>k, 0, 1) +`if`(isprime(n), 0,
          add(`if`(d>k, 0, b(n/d, d-1)), d=divisors(n) minus {1, n}))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=1..120);  # Alois P. Heinz, May 26 2013
  • Mathematica
    gd[m_, 1] := 1; gd[1, n_] := 0; gd[1, 1] := 1; gd[0, n_] := 0; gd[m_, n_] := gd[m, n] = Total[gd[# - 1, n/#] & /@ Select[Divisors[n], # <= m &]]; Array[ gd[#, #] &, 100]  (* Alexander Adam, Dec 28 2012 *)
  • PARI
    v=vector(100,k,k==1); for(n=2,#v, v+=dirmul(v,vector(#v,k,k==n)) ); v /* Max Alekseyev, Jul 16 2014 */
    
  • PARI
    A045778(n, k=n) = ((n<=k) + sumdiv(n, d, if(d > 1 && d <= k && d < n, A045778(n/d, d-1)))); \\ After Alois P. Heinz's Maple-code by Antti Karttunen, Jul 23 2017, edited Feb 20 2024
    
  • PARI
    A045778(n, m=n) = if(1==n, 1, sumdiv(n,d,if((d>1)&&(d<=m),A045778(n/d,d-1)))); \\ Antti Karttunen, Feb 20 2024
    
  • Python
    from sympy.core.cache import cacheit
    from sympy import divisors, isprime
    @cacheit
    def b(n, k): return (0 if n>k else 1) + (0 if isprime(n) else sum(0 if d>k else b(n//d, d - 1) for d in divisors(n)[1:-1]))
    def a(n): return b(n, n)
    print([a(n) for n in range(1, 121)]) # Indranil Ghosh, Aug 19 2017, after Maple code
    

Formula

Dirichlet g.f.: Product_{n>=2} (1 + 1/n^s).
Let p and q be two distinct prime numbers and k a natural number. Then a(p^k) = A000009(k) and a(p^k*q) = A036469(k). - Alexander Adam, Dec 28 2012
Let p_i with 1<=i<=k k distinct prime numbers. Then a(Product_{i=1..k} p_i) = A000110(k). - Alexander Adam, Dec 28 2012

Extensions

Edited by Franklin T. Adams-Watters, Jun 04 2009

A114592 Sum_{n>=1} a(n)/n^s = Product_{k>=2} (1 - 1/k^s).

Original entry on oeis.org

1, -1, -1, -1, -1, 0, -1, 0, -1, 0, -1, 1, -1, 0, 0, 0, -1, 1, -1, 1, 0, 0, -1, 1, -1, 0, 0, 1, -1, 1, -1, 1, 0, 0, 0, 1, -1, 0, 0, 1, -1, 1, -1, 1, 1, 0, -1, 1, -1, 1, 0, 1, -1, 1, 0, 1, 0, 0, -1, 1, -1, 0, 1, 0, 0, 1, -1, 1, 0, 1, -1, 1, -1, 0, 1, 1, 0, 1
Offset: 1

Views

Author

Leroy Quet, Dec 11 2005

Keywords

Comments

For n >= 2, Sum_{k|n} A001055(n/k) * a(k) = 0. A114591(n) = Sum_{k|n} a(k).
First entry greater than 1 in absolute value is a(360) = -2. - Gus Wiseman, Sep 15 2018

Examples

			24 can be factored into distinct integers (each >= 2) as 24; as 4*6, 3*8 and 2*12; and as 2*3*4. (A045778(24) = 5).
So a(24) = (-1)^1 + 3*(-1)^2 + (-1)^3 = 1, where the 1 exponent is due to the 1 factor of the 24 = 24 factorization and the 2 exponent is due to the 3 cases of 2 factors each of the 24 = 4*6 = 3*8 = 2*12 factorizations and the 3 exponent is due to the 24 = 2*3*4 factorization.
		

Crossrefs

Programs

  • Mathematica
    strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    Table[Sum[(-1)^Length[f],{f,strfacs[n]}],{n,100}] (* Gus Wiseman, Sep 15 2018 *)
  • PARI
    A114592aux(n, k) = if(1==n, 1, sumdiv(n, d, if(d > 1 && d <= k && d < n, (-1)*A114592aux(n/d, d-1))) - (n<=k)); \\ After code in A045778.
    A114592(n) = A114592aux(n,n); \\ Antti Karttunen, Jul 23 2017

Formula

a(1) = 1; for n>= 2, a(n) = sum, over ways to factor n into any number of distinct integers >= 2, of (-1)^(number of integers in a factorization). (See example.)

Extensions

More terms from Antti Karttunen, Jul 23 2017

A319238 Positions of zeros in A114592, the list of coefficients in the expansion of Product_{n > 1} (1 - 1/n^s).

Original entry on oeis.org

6, 8, 10, 14, 15, 16, 21, 22, 26, 27, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 64, 65, 69, 74, 77, 81, 82, 85, 86, 87, 91, 93, 94, 95, 96, 106, 111, 115, 118, 119, 120, 122, 123, 125, 129, 133, 134, 141, 142, 143, 144, 145, 146, 155, 158, 159, 160, 161, 166
Offset: 1

Views

Author

Gus Wiseman, Sep 15 2018

Keywords

Comments

From Tian Vlasic, Jan 01 2022: (Start)
Numbers that have an equal number of even- and odd-length unordered factorizations into distinct factors.
For prime p, by the pentagonal number theorem, p^k is a term if and only if k is in A090864.
For primes p and q, p*q^k is a term if and only if k = A000326(m)+N with 0 <= N < m. (End)

Examples

			16 = 2*8 = 4*4 = 2*2*4 = 2*2*2*2 has an equal number of even-length factorizations and odd-length factorizations into distinct factors (1). - _Tian Vlasic_, Dec 31 2021
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Join@@Position[Table[Sum[(-1)^Length[f],{f,Select[facs[n],UnsameQ@@#&]}],{n,100}],0]

A339717 Dirichlet g.f.: Product_{k>=2} 1 / (1 + k^(-s))^2.

Original entry on oeis.org

1, -2, -2, 1, -2, 2, -2, -2, 1, 2, -2, 0, -2, 2, 2, 4, -2, 0, -2, 0, 2, 2, -2, 4, 1, 2, -2, 0, -2, 2, -2, -4, 2, 2, 2, 2, -2, 2, 2, 4, -2, 2, -2, 0, 0, 2, -2, -4, 1, 0, 2, 0, -2, 4, 2, 4, 2, 2, -2, 0, -2, 2, 0, 5, 2, 2, -2, 0, 2, 2, -2, -4, -2, 2, 0, 0, 2, 2, -2, -4
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 14 2020

Keywords

Crossrefs

Formula

a(1) = 1; a(n) = -Sum_{d|n, d < n} A328706(n/d) * a(d).
a(n) = Sum_{d|n} A316441(n/d) * A316441(d).
a(p^k) = A022597(k) for prime p.

A339718 Dirichlet g.f.: Product_{k>=2} 1 / (1 + k^(-s))^3.

Original entry on oeis.org

1, -3, -3, 3, -3, 6, -3, -4, 3, 6, -3, -3, -3, 6, 6, 9, -3, -3, -3, -3, 6, 6, -3, 9, 3, 6, -4, -3, -3, -3, -3, -12, 6, 6, 6, 3, -3, 6, 6, 9, -3, -3, -3, -3, -3, 6, -3, -18, 3, -3, 6, -3, -3, 9, 6, 9, 6, 6, -3, -3, -3, 6, -3, 15, 6, -3, -3, -3, 6, -3, -3, -15, -3, 6, -3, -3, 6, -3, -3, -18
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 14 2020

Keywords

Crossrefs

Formula

a(1) = 1; a(n) = -Sum_{d|n, d < n} A339335(n/d) * a(d).
a(p^k) = A022598(k) for prime p.

A319237 Positions of nonzero terms in A114592, the list of coefficients in the expansion of Product_{n > 1} (1 - 1/n^s).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 11, 12, 13, 17, 18, 19, 20, 23, 24, 25, 28, 29, 30, 31, 32, 36, 37, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 60, 61, 63, 66, 67, 68, 70, 71, 72, 73, 75, 76, 78, 79, 80, 83, 84, 88, 89, 90, 92, 97, 98, 99, 100, 101, 102
Offset: 1

Views

Author

Gus Wiseman, Sep 15 2018

Keywords

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Join@@Position[Table[Sum[(-1)^Length[f],{f,Select[facs[n],UnsameQ@@#&]}],{n,100}],_Integer?(Abs[#]>0&)]

A339719 Dirichlet g.f.: Product_{k>=2} 1 / (1 + k^(-s))^4.

Original entry on oeis.org

1, -4, -4, 6, -4, 12, -4, -8, 6, 12, -4, -12, -4, 12, 12, 17, -4, -12, -4, -12, 12, 12, -4, 20, 6, 12, -8, -12, -4, -20, -4, -28, 12, 12, 12, 10, -4, 12, 12, 20, -4, -20, -4, -12, -12, 12, -4, -48, 6, -12, 12, -12, -4, 20, 12, 20, 12, 12, -4, 4, -4, 12, -12, 38, 12, -20, -4, -12, 12, -20
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 14 2020

Keywords

Crossrefs

Formula

a(1) = 1; a(n) = -Sum_{d|n, d < n} A339336(n/d) * a(d).
a(p^k) = A022599(k) for prime p.

A339720 Dirichlet g.f.: Product_{k>=2} 1 / (1 + k^(-s))^5.

Original entry on oeis.org

1, -5, -5, 10, -5, 20, -5, -15, 10, 20, -5, -30, -5, 20, 20, 30, -5, -30, -5, -30, 20, 20, -5, 45, 10, 20, -15, -30, -5, -55, -5, -56, 20, 20, 20, 35, -5, 20, 20, 45, -5, -55, -5, -30, -30, 20, -5, -105, 10, -30, 20, -30, -5, 45, 20, 45, 20, 20, -5, 45, -5, 20, -30, 85, 20
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 14 2020

Keywords

Crossrefs

Formula

a(1) = 1; a(n) = -Sum_{d|n, d < n} A339337(n/d) * a(d).
a(p^k) = A022600(k) for prime p.
Showing 1-10 of 24 results. Next