cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114596 Triangle read by rows: T(n,k) is the number of hill-free Dyck paths of semilength n and having abscissa of first return equal to 2k (2<=k<=n). A hill in a Dyck path is a peak at level 1.

Original entry on oeis.org

1, 0, 2, 1, 0, 5, 2, 2, 0, 14, 6, 4, 5, 0, 42, 18, 12, 10, 14, 0, 132, 57, 36, 30, 28, 42, 0, 429, 186, 114, 90, 84, 84, 132, 0, 1430, 622, 372, 285, 252, 252, 264, 429, 0, 4862, 2120, 1244, 930, 798, 756, 792, 858, 1430, 0, 16796, 7338, 4240, 3110, 2604, 2394, 2376, 2574, 2860, 4862, 0, 58786
Offset: 2

Views

Author

Emeric Deutsch, Dec 12 2005

Keywords

Comments

Row sums are the Fine numbers (A000957). Column 2 yield the Fine numbers (A000957).

Examples

			T(5,3)=2 because we have UUUDDD|UUDD and UUDUDD|UUDD, where U=(1,1), D=(1,-1) (first return is shown by a vertical bar).
Triangle begins:
   1;
   0,  2;
   1,  0,  5;
   2,  2,  0, 14;
   6,  4,  5,  0, 42;
  18, 12, 10, 14,  0, 132;
		

Crossrefs

Programs

  • Maple
    c:=n->binomial(2*n,n)/(n+1): f:=n->3*sum(binomial(2*n-2*j,n),j=0..floor(n/2))-binomial(2*n+2,n+1): for n from 2 to 12 do seq(c(k-1)*f(n-k),k=2..n) od; # yields sequence in triangular form
  • Mathematica
    f[n_]:= 3*Sum[Binomial[2*n-2*j, n], {j,0,Floor[n/2]}] - Binomial[2*n+2, n +1]; Table[CatalanNumber[k-1]*f[n-k], {n,2,12}, {k,2,n}] (* G. C. Greubel, Apr 06 2019 *)
  • PARI
    {f(n) = 3*sum(j=0, floor(n/2), binomial(2*n-2*j, n)) - binomial(2*n+2, n+1)};
    for(n=2,12, for(k=2,n, print1((binomial(2*(k-1),k)/(k-1))*f(n-k), ", "))) \\ G. C. Greubel, Apr 06 2019
    
  • Sage
    @CachedFunction
    def f(n):
      return 3*sum(binomial(2*n-2*j, n) for j in (0..floor(n/2))) - binomial(2*n+2, n+1)
    def T(n,k): return catalan_number(k-1)*f(n-k)
    [[T(n,k) for k in (2..n)] for n in (2..12)] # G. C. Greubel, Apr 06 2019

Formula

T(n,n) = Catalan(n-1) (A000108).
Sum_{k=2..n} k*T(n,k) = 2*A014301(n).
T(n, k) = Catalan(k-1)*f(n-k), for 2<=k<=n, where Catalan(n) are the Catalan numbers (A000108) and f(n) = 3*Sum_{j=0..floor(n/2)} ( binomial(2n-2j, n) ) - binomial(2n+2, n+1) (the Fine numbers, A000957).
G.f.: (2*(1+x-t*x) +sqrt(1-4*x) -sqrt(1-4*t*x))/(1 +2*x +sqrt(1-4*x)) -1.

Extensions

Keyword tabf changed to tabl by Michel Marcus, Apr 09 2013