A114620 2*A084158 (twice Pell triangles).
0, 2, 10, 60, 348, 2030, 11830, 68952, 401880, 2342330, 13652098, 79570260, 463769460, 2703046502, 15754509550, 91824010800, 535189555248, 3119313320690, 18180690368890, 105964828892652, 617608282987020
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (5,5,-1).
Programs
-
Mathematica
Table[Fibonacci[n, 2] Fibonacci[n + 1, 2], {n, 0, 20}] (* or *) LinearRecurrence[{5, 5, -1}, {0, 2, 10}, 21] (* or *) CoefficientList[Series[2 x/((x + 1) (x^2 - 6 x + 1)), {x, 0, 20}], x] (* Michael De Vlieger, Jul 17 2016 *)
Formula
G.f.: 2*x/((x+1)*(x^2-6*x+1)).
From George F. Johnson, Aug 13 2012: (Start)
a(n) = ((sqrt(2) + 1)^(2*n+1) - (sqrt(2) - 1)^(2*n+1) - 2*(-1)^n)/8. - corrected by Ilya Gutkovskiy, Jul 18 2016
4*a(n)*(2*a(n) + (-1)^n) + 1 = A000129(2*n+1)^2 is a perfect square.
For n >= 0, a(n+1) = 3*a(n) + (-1)^n + sqrt(4*a(n)*(2*a(n) + (-1)^n) + 1).
For n > 0, a(n-1) = 3*a(n) + (-1)^n - sqrt(4*a(n)*(2*a(n) + (-1)^n) + 1).
a(n+1) = 6*a(n) - a(n-1) + 2*(-1)^n.
a(n+1) = 5*a(n) + 5*a(n-1) - a(n-2).
For n > 0, a(n+1)*a(n-1) = a(n)*(a(n) + 2*(-1)^n).
a(n) = A046729(n)/2. (End)
a(n) = A002965(2*(n+1))*(A002965(2*(n+1)+1) - A002965(2*(n+1))). - Daniel Poveda Parrilla, Jul 17 2016
Comments