cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114647 Expansion of (3 -4*x -3*x^2)/((1-x^2)*(1-2*x-x^2)); a Pellian-related sequence.

Original entry on oeis.org

3, 2, 7, 12, 31, 70, 171, 408, 987, 2378, 5743, 13860, 33463, 80782, 195027, 470832, 1136691, 2744210, 6625111, 15994428, 38613967, 93222358, 225058683, 543339720, 1311738123, 3166815962, 7645370047, 18457556052, 44560482151, 107578520350, 259717522851
Offset: 0

Views

Author

Creighton Dement, Feb 18 2006

Keywords

Comments

Generating floretion: - 1.5'i + 'j + 'k - .5i' + j' + k' + .5'ii' - .5'jj' - .5'kk' - 'ij' + 'ik' - 'ji' + .5'jk' + 2'ki' - .5'kj' + .5e

Crossrefs

Programs

  • Magma
    I:=[3,2,7,12]; [n le 4 select I[n] else 2*Self(n-1) +2*Self(n-2) -2*Self(n-3) -Self(n-4): n in [1..31]]; // G. C. Greubel, May 24 2021
    
  • Mathematica
    Table[Fibonacci[n+1, 2] +1+(-1)^n, {n, 0, 30}] (* G. C. Greubel, May 24 2021 *)
  • PARI
    Vec((3-4*x-3*x^2)/((1-x^2)*(1-2*x-x^2)) + O(x^50)) \\ Colin Barker, May 26 2016
    
  • Sage
    [lucas_number1(n+1,2,-1) +(1+(-1)^n) for n in (0..30)] # G. C. Greubel, May 24 2021

Formula

G.f.: (3 -4*x -3*x^2)/((1-x)*(1+x)*(1-2*x-x^2)).
a(n) = A000129(n+1) + 2*A059841(n). - R. J. Mathar, Nov 10 2009
From Colin Barker, May 26 2016: (Start)
a(n) = 1 + (-1)^n + ((1+sqrt(2))^(1+n) - (1-sqrt(2))^(1+n))/(2*sqrt(2)).
a(n) = 2*a(n-1) +2*a(n-2) -2*a(n-3) -a(n-4) for n>3. (End)
a(n) = A000129(n+1) + 1 + (-1)^n. - G. C. Greubel, May 24 2021