A114689 Expansion of (1 +4*x -x^2)/((1-x^2)*(1-2*x-x^2)); a Pellian-related sequence.
1, 6, 13, 36, 85, 210, 505, 1224, 2953, 7134, 17221, 41580, 100381, 242346, 585073, 1412496, 3410065, 8232630, 19875325, 47983284, 115841893, 279667074, 675176041, 1630019160, 3935214361, 9500447886, 22936110133, 55372668156, 133681446445, 322735561050
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,2,-2,-1).
Crossrefs
Programs
-
Magma
I:=[1,6,13,36]; [n le 4 select I[n] else 2*Self(n-1) +2*Self(n-2) -2*Self(n-3) -Self(n-4): n in [1..31]]; // G. C. Greubel, May 24 2021
-
Mathematica
Table[3*Fibonacci[n+1, 2] -1-(-1)^n, {n, 0, 30}] (* G. C. Greubel, May 24 2021 *)
-
PARI
Vec((-1-4*x+x^2)/((1-x)*(x+1)*(x^2+2*x-1)) + O(x^30)) \\ Colin Barker, May 26 2016
-
Sage
[3*lucas_number1(n+1,2,-1) -(1+(-1)^n) for n in (0..30)] # G. C. Greubel, May 24 2021
Formula
G.f.: (1 +4*x -x^2)/((1-x)*(1+x)*(1-2*x-x^2)).
From Colin Barker, May 26 2016: (Start)
a(n) = (-1 - (-1)^n) + 3*((1+sqrt(2))^(1+n) - (1-sqrt(2))^(1+n))/(2*sqrt(2)).
a(n) = 2*a(n-1) +2*a(n-2) -2*a(n-3) -a(n-4) for n>3.
(End)
a(n) = 3*A000129(n+1) - (1 + (-1)^n). - G. C. Greubel, May 24 2021
Comments