cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114689 Expansion of (1 +4*x -x^2)/((1-x^2)*(1-2*x-x^2)); a Pellian-related sequence.

Original entry on oeis.org

1, 6, 13, 36, 85, 210, 505, 1224, 2953, 7134, 17221, 41580, 100381, 242346, 585073, 1412496, 3410065, 8232630, 19875325, 47983284, 115841893, 279667074, 675176041, 1630019160, 3935214361, 9500447886, 22936110133, 55372668156, 133681446445, 322735561050
Offset: 0

Views

Author

Creighton Dement, Feb 18 2006

Keywords

Comments

Elements of odd index give match to A075848: 2*n^2 + 9 is a square. Generating floretion: - 1.5'i + 'j + 'k - .5i' + j' + k' + .5'ii' - .5'jj' - .5'kk' - 'ij' + 'ik' - 'ji' + .5'jk' + 2'ki' - .5'kj' + .5e

Crossrefs

Programs

  • Magma
    I:=[1,6,13,36]; [n le 4 select I[n] else 2*Self(n-1) +2*Self(n-2) -2*Self(n-3) -Self(n-4): n in [1..31]]; // G. C. Greubel, May 24 2021
    
  • Mathematica
    Table[3*Fibonacci[n+1, 2] -1-(-1)^n, {n, 0, 30}] (* G. C. Greubel, May 24 2021 *)
  • PARI
    Vec((-1-4*x+x^2)/((1-x)*(x+1)*(x^2+2*x-1)) + O(x^30)) \\ Colin Barker, May 26 2016
    
  • Sage
    [3*lucas_number1(n+1,2,-1) -(1+(-1)^n) for n in (0..30)] # G. C. Greubel, May 24 2021

Formula

G.f.: (1 +4*x -x^2)/((1-x)*(1+x)*(1-2*x-x^2)).
From Colin Barker, May 26 2016: (Start)
a(n) = (-1 - (-1)^n) + 3*((1+sqrt(2))^(1+n) - (1-sqrt(2))^(1+n))/(2*sqrt(2)).
a(n) = 2*a(n-1) +2*a(n-2) -2*a(n-3) -a(n-4) for n>3.
(End)
a(n) = 3*A000129(n+1) - (1 + (-1)^n). - G. C. Greubel, May 24 2021