cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114695 Three consecutive elements of the sequence built from a quadratic form over four consecutive Fibonacci numbers A000045.

Original entry on oeis.org

2, 2, 4, 104, 143, 169, 4895, 6764, 7921, 229970, 317810, 372100, 10803704, 14930351, 17480761, 507544127, 701408732, 821223649, 23843770274, 32951280098, 38580030724, 1120149658760, 1548008755919, 1812440220361
Offset: 0

Views

Author

Roger L. Bagula, Feb 21 2006

Keywords

Crossrefs

Programs

  • Mathematica
    F[n_]:= Fibonacci[n]; Flatten[Table[{F[4*n+2]*F[4*n+3], (F[4*n]+F[4*n+2])*F[4*n+ 3], F[4*n+3]^2}, {n, 0, 12}]] (* modified by G. C. Greubel, May 24 2021 *)
    With[{m = Floor[n/3], F = Fibonacci}, Table[F[4*m+3]*(4*F[4*m+2] -(Mod[n^2,3]*F[4*m +2] +Mod[(n+2)^2, 3]*LucasL[4*m+1] +Mod[(n+1)^2, 3]*F[4*m+3])), {n, 0, 40}]] (* G. C. Greubel, May 24 2021 *)
  • Sage
    f=fibonacci;
    def A114695(n): return f(4*(n//3)+3)*( 4*f(4*(n//3)+2) - ((n^2%3)*f(4*(n//3)+2) + ((n+2)^2%3)*(f(4*(n//3)+2) + f(4*(n//3))) + ((n+1)^2%3)*f(4*(n//3)+3) ) )
    [A114695(n) for n in (0..40)] # G. C. Greubel, May 24 2021

Formula

a(3*n) = Fibonacci(4*n+2)*Fibonacci(4*n+3).
a(3*n+1) = Lucas(4*n+1)*Fibonacci(4*n+3).
a(3*n+2) = Fibonacci(4*n+3)*Fibonacci(4*n+3).
From R. J. Mathar, Apr 16 2009: (Start)
a(3*n) = A001654(4*n+2).
a(3*n+1) = A128535(4*n+3).
a(3*n+2) = A007598(4*n+3).
G.f.: (2+2*x+4*x^2+8*x^3+47*x^4-23*x^5-x^6-4*x^7+x^8)/((1-x)*(1+x+x^2)*(1-47*x^3+x^6)).
a(n) = 48*a(n-3) - 48*a(n-6) + a(n-9). (End)
a(n) = F(4*m+3)*( 4*F(4*m+2) - ((n^2 mod 3)*F(4*m+2) + ((n+2)^2 mod 3)*Lucas(4*m+1) + ((n+1)^2 mod 3)*F(4*m+3)) ), where m = floor(n/3) and F = Fibonacci. - G. C. Greubel, May 24 2021

Extensions

Edited by the Associate Editors of the OEIS, Sep 02 2009