cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A116466 Unsigned row sums of triangle A114700.

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 4, 8, 10, 20, 32, 64, 112, 224, 408, 816, 1514, 3028, 5680, 11360, 21472, 42944, 81644, 163288, 311896, 623792, 1196132, 2392264, 4602236, 9204472, 17757184, 35514368, 68680170, 137360340, 266200112, 532400224, 1033703056
Offset: 0

Views

Author

Paul D. Hanna, Feb 19 2006

Keywords

Comments

Both triangles A112555 and A114700 have the property that the m-th matrix power of the triangles satisfy T^m = I + m*(T - I). So it is curious that the row squared sums of A112555 is a bisection of the unsigned row sums of A114700.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 + 2*x)*(2*(1 + x^2)/(1 - x^2) + x^2/(1 - 4*x^2)^(1/2))/(2 + x^2), {x, 0, 50}], x] (* Wesley Ivan Hurt, Feb 21 2017 *)
  • PARI
    a(n)=local(x=X+X*O(X^n)); polcoeff((1+2*x)*(2*(1+x^2)/(1-x^2)+x^2/(1-4*x^2)^(1/2))/(2+x^2),n,X)
    
  • PARI
    /* a(n) as the unsigned row sums of A114700 */ a(n)=sum(k=0,n,abs(polcoeff(polcoeff(1/(1-x*y)+ x*(1+x-2*x^2*y)/(1-x)/(1+x+x*y+x*O(x^n)+y*O(y^k))/(1-x*y),n,x),k,y)))

Formula

G.f.: (1+2*x)*( 2*(1+x^2)/(1-x^2) + x^2/(1-4*x^2)^(1/2) )/(2+x^2). Also, a(2*n+1) = 2*a(2*n), a(2*n) = A112556(n), where A112556 equals the row squared sums of triangle A112555.

A116467 Row squared sums of triangle A114700: a(n) = Sum_{k=0..n} A114700(n,k)^2.

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 4, 8, 18, 52, 164, 544, 1852, 6416, 22520, 79888, 285938, 1031316, 3744628, 13676384, 50209860, 185190400, 685888736, 2549873880, 9511787452, 35592025904, 133559834064, 502494233128, 1895089009088, 7162963968712
Offset: 0

Views

Author

Paul D. Hanna, Feb 19 2006

Keywords

Crossrefs

Cf. A114700 (triangle), A116466 (unsigned row sums).

Programs

  • PARI
    {a(n)=sum(k=0,n,polcoeff(polcoeff(1/(1-x*y)+ x*(1+x-2*x^2*y)/(1-x)/(1+x+x*y+x*O(x^n)+y*O(y^k))/(1-x*y),n,x),k,y)^2)}

Formula

G.f.: A(x) = 2*(1-6*x+2*x^2+6*x^3+3*x^4)/(2-10*x-x^2)/(1-x)^2 + x*(2+x)*(1-4*x)/(2-10*x-x^2)/2*deriv(A(x)).
Showing 1-2 of 2 results.