A114709 Triangle read by rows: T(n,k) is the number of hill-free Schroeder paths of length 2n that have k horizontal steps on the x-axis (0<=k<=n). A Schroeder path of length 2n is a lattice path from (0,0) to (2n,0) consisting of U=(1,1), D=(1,-1) and H=(2,0) steps and never going below the x-axis. A hill is a peak at height 1.
1, 0, 1, 2, 0, 1, 6, 4, 0, 1, 26, 12, 6, 0, 1, 114, 56, 18, 8, 0, 1, 526, 252, 90, 24, 10, 0, 1, 2502, 1192, 414, 128, 30, 12, 0, 1, 12194, 5772, 2006, 600, 170, 36, 14, 0, 1, 60570, 28536, 9882, 2976, 810, 216, 42, 16, 0, 1, 305526, 143388, 49554, 14904, 4110, 1044
Offset: 0
Examples
T(4,2)=6 because we have (HH)UHD,(HH)UUDD,(H)UHD(H),(H)UUDD(H),UHD(HH) and UUDD(HH), where U=(1,1), D=(1,-1) and H=(2,0) (the H's on the x-axis are shown between parentheses). Triangle starts: 1; 0,1; 2,0,1; 6,4,0,1; 26,12,6,0,1; Production matrix is 0, 1, 2, 0, 1, 6, 2, 0, 1, 18, 6, 2, 0, 1, 54, 18, 6, 2, 0, 1, 162, 54, 18, 6, 2, 0, 1, 486, 162, 54, 18, 6, 2, 0, 1, 1458, 486, 162, 54, 18, 6, 2, 0, 1 where the columns have generator (1-x)*(1-2*x)/(1-3*x).
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..11475 (assuming the Kruchinin formula, rows 0 <= n <= 150, flattened.)
- Emeric Deutsch, L. Ferrari, and S. Rinaldi, Production Matrices, Advances in Applied Mathematics, 34 (2005) pp. 101-122.
- Shishuo Fu and Yaling Wang, Bijective recurrences concerning two Schröder triangles, arXiv:1908.03912 [math.CO], 2019.
Programs
-
Maple
R:=(1-z-sqrt(1-6*z+z^2))/2/z: G:=1/(1+z-t*z-z*R): Gser:=simplify(series(G,z=0,14)): P[0]:=1: for n from 1 to 10 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 10 do seq(coeff(t*P[n],t^j),j=1..n+1) od; # yields sequence in triangular form
-
Mathematica
Table[Sum[(i + 1) Binomial[k + i + 1, k] Sum[(-1)^(j + i)*2^(n - k - j - i)* Binomial[n + 1, j] Binomial[2 n - k - j - i, n], {j, 0, n - k - i}], {i, 0, n - k}]/(n + 1), {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Oct 30 2019 *)
-
Maxima
T(n,k):=sum((i+1)*binomial(k+i+1,k)*sum((-1)^(j+i)*2^(n-k-j-i)*binomial(n+1,j)*binomial(2*n-k-j-i,n),j,0,n-k-i),i,0,n-k)/(n+1); /* Vladimir Kruchinin, Feb 29 2016 */
Formula
G.f.: 1/(1+z-t*z-z*R), where R=(1-z-sqrt(1-6*z+z^2))/(2*z) is the g.f. of the large Schroeder numbers (A006318).
T(n,k) = Sum_{i=0..n-k}((i+1)*binomial(k+i+1,k)*Sum_{j=0..n-k-i}((-1)^(j+i)*2^(n-k-j-i)*binomial(n+1,j)*binomial(2*n-k-j-i,n)))/(n+1). - Vladimir Kruchinin, Feb 29 2016
Comments