cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A186940 Diagonal sums of number triangle A114709.

Original entry on oeis.org

1, 0, 3, 6, 31, 126, 589, 2772, 13485, 66780, 336207, 1714698, 8841627, 46015002, 241394073, 1275137448, 6776728825, 36208438488, 194388488155, 1048061471886, 5672504958327, 30808982057046, 167864115588325, 917271225518076, 5025659929354981
Offset: 0

Views

Author

Paul Barry, Mar 01 2011

Keywords

Crossrefs

Cf. A114709.
Hankel transform is A186941.

Programs

  • Mathematica
    Rest[CoefficientList[Series[(1+3*x-2*x^2-Sqrt[1-6*x+x^2])/(2*(3+x-3*x^2+x^3)), {x, 0, 20}], x]] (* Vaclav Kotesovec, Feb 01 2014 *)

Formula

G.f. (for offset 1): (1+3*x-2*x^2-sqrt(1-6*x+x^2))/(2*(3+x-3*x^2+x^3)).
Conjecture: 3*(n+1)*a(n) +(10-17*n)*a(n-1) -6*(n+1)*a(n-2) +10*(2*n-1)*a(n-3) +9*(1-n)*a(n-4) +(n-2)*a(n-5) =0. - R. J. Mathar, Nov 17 2011
a(n) ~ sqrt(3*sqrt(2)-4) * (3+2*sqrt(2))^(n+2) / (36 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 01 2014

Extensions

More terms from Vincenzo Librandi, Feb 14 2014

A114710 Number of hill-free Schroeder paths of length 2n that have no horizontal steps on the x-axis.

Original entry on oeis.org

1, 0, 2, 6, 26, 114, 526, 2502, 12194, 60570, 305526, 1560798, 8058714, 41987106, 220470942, 1165553718, 6198683090, 33140219946, 178012804678, 960232902606, 5199384505226, 28250295397170, 153977094874862, 841656387060006
Offset: 0

Views

Author

Emeric Deutsch, Dec 26 2005

Keywords

Comments

A Schroeder path of length 2n is a lattice path from (0, 0) to (2n, 0) consisting of U = (1,1), D = (1,-1) and H = (2,0) steps and never going below the x-axis. A hill is a peak at height 1.
Hankel transform is 2^C(n+1,2) (A006125(n+1)). Hankel transform of a(n+1) is (2-2^(n+1))*2^C(n+1,2). - Paul Barry, Oct 31 2008

Examples

			a(3) = 6 because we have UHHD, UHUDD, UUDHD, UUDUDD, UUHDD and UUUDDD.
		

Crossrefs

Column 0 of A114709.

Programs

  • Maple
    G:=2/(1+3*z+sqrt(1-6*z+z^2)): Gser:=series(G,z=0,32):
    1,seq(coeff(Gser,z^n),n=1..27);
    # Alternative:
    a := proc(n) option remember; if n < 3 then return [1, 0, 2, 6][n+1] fi;
    ((4 - 2*n)*a(n-3) + (16*n - 11)*a(n-1) + 9*n*a(n-2))/(3*n + 3) end:
    seq(a(n), n = 0..23); # Peter Luschny, Nov 10 2022
  • Mathematica
    A114710[n_] := (-1)^n Sum[Binomial[n, k] Hypergeometric2F1[k - n, n + 1, k + 2, 2], {k, 0, n}]; Table[A114710[n], {n, 0, 23}] (* Peter Luschny, Jan 08 2018 *)
    InverseInvertTransform[ser_, n_] := CoefficientList[Series[ser/(1 + x ser), {x, 0, n}], x]; LittleSchroeder := (1 + x - Sqrt[1 - 6 x + x^2])/(4 x); (* A001003 *)
    InverseInvertTransform[LittleSchroeder, 23] (* Peter Luschny, Jan 10 2019 *)

Formula

G.f.: A(x) = 2/(1+3*x+sqrt(1-6*x+x^2)).
D-finite with recurrence 3*(n+1)*a(n) +(11-16*n)*a(n-1) -9*n*a(n-2) +2*(n-2)*a(n-3)=0. - R. J. Mathar, Nov 07 2012
G.f.: 1/(Q(0) + 2*x) where Q(k) = 1 + k*(1-x) - x - x*(k+1)*(k+2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Mar 14 2013
a(n) = (-1)^n*Sum_{k=0..n} binomial(n, k)*hypergeom([k - n, n + 1], [k + 2], 2). - Peter Luschny, Jan 08 2018
O.g.f. A(x) = 1/x * series reversion of x*(1 - 3*x)/((1 - x)*(1 - 2*x)). Cf. A297705. - Peter Bala, Nov 08 2022
a(n) ~ (9 + 4*sqrt(2)) * (1 + sqrt(2))^(2*n + 1) / (49 * sqrt(Pi) * 2^(3/4) * n^(3/2)). - Vaclav Kotesovec, Nov 10 2022
Showing 1-2 of 2 results.