cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114725 The first entry of the vector v[n]=Mv[n-1], where M is the 6 X 6 matrix [[0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1], [1, 5, 10, 10, 5, 1]] and v[0] is the column vector [0, 1, 1, 2, 3, 5].

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 55, 136, 502, 1799, 6247, 21902, 76882, 269498, 944895, 3313259, 11617291, 40733828, 142826195, 500794808, 1755948163, 6156922147, 21588159423, 75695064671, 265411365121, 930618039799
Offset: 0

Views

Author

Roger L. Bagula, Feb 18 2006

Keywords

Comments

Characteristic polynomial of the matrix M is x^6-(x+1)^5.

Programs

  • Maple
    a[0]:=0:a[1]:=1:a[2]:=1:a[3]:=2:a[4]:=3:a[5]:=5: for n from 6 to 25 do a[n]:=a[n-1]+5*a[n-2]+10*a[n-3]+10*a[n-4]+5*a[n-5]+a[n-6] od: seq(a[n],n=0..25);
  • Mathematica
    M = {{0, 1, 0, 0, 0}, {0, 0, 1, 0, 0}, {0, 0, 0, 1, 0}, {0, 0, 0, 0, 1}, {1, 4, 6, 4, 1}}; w[0] = {0, 1, 1, 2, 3}; w[n_] := w[n] = M.w[n - 1] a = Flatten[Table[w[n][[1]], {n, 0, 25}]]
    LinearRecurrence[{1,5,10,10,5,1},{0,1,1,2,3,5},30] (* Harvey P. Dale, Jun 15 2014 *)

Formula

Recurrence relation: a(n)=a(n-1)+5a(n-2)+10a(n-3)+10a(n-4)+5a(n-5)+a(n-6) for n>=6; a(0)=0,a(1)=a(2)=1,a(3)=2,a(4)=3,a(5)=5.
O.g.f.: x*(2*x+1)*(14*x^3+2*x-1)/(-1+x+5*x^2+10*x^3+10*x^4+5*x^5+x^6) . - R. J. Mathar, Dec 05 2007

Extensions

Edited by N. J. A. Sloane, May 13 2006