cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114736 Number of planar partitions of n where parts strictly decrease along each row and column.

Original entry on oeis.org

1, 1, 1, 3, 4, 6, 10, 15, 22, 33, 49, 70, 102, 146, 205, 290, 405, 561, 779, 1071, 1463, 1999, 2714, 3667, 4946, 6641, 8880, 11848, 15753, 20870, 27586, 36354, 47766, 62621, 81878, 106785, 138975, 180449, 233778, 302270, 390027, 502256, 645603, 828330, 1060851
Offset: 0

Views

Author

Keywords

Comments

If these partitions are "flattened" into a simple partition, the resulting partitions are those for which any part size present with multiplicity k implies the presence of at least k(k-1)/2 larger parts. E.g., [3,1|1] flattens to [3,1^2], 1 has multiplicity 2, so there must be at least 2*1/2 = 1 part larger than 1 - which is the 3.

Examples

			For n = 5, we have the 6 partitions [5], [4,1], [4|1], [3,2], [3|2] and [3,1|1].
From _Gus Wiseman_, Nov 15 2018: (Start)
The a(6) = 10 plane partitions:
  6   5 1   4 2   3 2 1
.
  5   4 1   4   3 2   3 1
  1   1     2   1     2
.
  3
  2
  1
(End)
		

References

  • B. Gordon, Multirowed partitions with strict decrease along columns (Notes on plane partitions IV.), Symposia Amer. Math. Soc. 19 (1971) 91-100.

Crossrefs

Programs

  • Mathematica
    prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
    multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
    Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],And@@(OrderedQ[#,Greater]&/@prs2mat[#]),And@@(OrderedQ[#,Greater]&/@Transpose[prs2mat[#]])]&]],{n,5}] (* Gus Wiseman, Nov 15 2018 *)

Extensions

Clarified definition, added 30 terms and reference. - Dennis K Moore, Jan 12 2011
a(40)-a(44) from Alois P. Heinz, Sep 26 2018