cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A000293 a(n) = number of solid (i.e., three-dimensional) partitions of n.

Original entry on oeis.org

1, 1, 4, 10, 26, 59, 140, 307, 684, 1464, 3122, 6500, 13426, 27248, 54804, 108802, 214071, 416849, 805124, 1541637, 2930329, 5528733, 10362312, 19295226, 35713454, 65715094, 120256653, 218893580, 396418699, 714399381, 1281403841, 2287986987, 4067428375, 7200210523, 12693890803, 22290727268, 38993410516, 67959010130, 118016656268, 204233654229, 352245710866, 605538866862, 1037668522922, 1772700955975, 3019333854177, 5127694484375, 8683676638832, 14665233966068, 24700752691832, 41495176877972, 69531305679518
Offset: 0

Views

Author

Keywords

Comments

An ordinary partition is a row of numbers in nondecreasing order whose sum is n. Here the numbers are in a three-dimensional pile, nondecreasing in the x-, y- and z-directions.
Finding a g.f. for this sequence is an unsolved problem. At first it was thought that it was given by A000294.
Equals A000041 convolved with A002836: [1, 0, 2, 5, 12, 24, 56, 113, ...] and row sums of the convolution triangle A161564. - Gary W. Adamson, Jun 13 2009

Examples

			Examples for n=2 and n=3.
a(2) = 4: 2; 11 where the first 1 is at the origin and the second 1 is in the x, y or z direction.
a(3) = 10: 3; 21 where the 2 is at the origin and the 1 is on the x, y or z axis; 111 (a row of 3 ones on the x, y or z axes); and three 1's with one 1 at the origin and the other two 1's on two of the three axes.
From _Gus Wiseman_, Jan 22 2019: (Start)
The a(1) = 1 through a(4) = 26 solid partitions, represented as chains of chains of integer partitions:
  ((1))  ((2))       ((3))            ((4))
         ((11))      ((21))           ((22))
         ((1)(1))    ((111))          ((31))
         ((1))((1))  ((2)(1))         ((211))
                     ((11)(1))        ((1111))
                     ((2))((1))       ((2)(2))
                     ((1)(1)(1))      ((3)(1))
                     ((11))((1))      ((21)(1))
                     ((1)(1))((1))    ((11)(11))
                     ((1))((1))((1))  ((111)(1))
                                      ((2))((2))
                                      ((3))((1))
                                      ((2)(1)(1))
                                      ((21))((1))
                                      ((11))((11))
                                      ((11)(1)(1))
                                      ((111))((1))
                                      ((2)(1))((1))
                                      ((1)(1)(1)(1))
                                      ((11)(1))((1))
                                      ((2))((1))((1))
                                      ((1)(1))((1)(1))
                                      ((1)(1)(1))((1))
                                      ((11))((1))((1))
                                      ((1)(1))((1))((1))
                                      ((1))((1))((1))((1))
(End)
		

References

  • P. A. MacMahon, Memoir on the theory of partitions of numbers - Part VI, Phil. Trans. Roal Soc., 211 (1912), 345-373.
  • P. A. MacMahon, Combinatory Analysis. Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p 332.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000041, A000219 (2-dim), A000294, A000334 (4-dim), A000390 (5-dim), A002835, A002836, A005980, A037452 (inverse Euler trans.), A080207, A007326, A000416 (6-dim), A000427 (7-dim), A179855 (8-dim).
Cf. A161564. - Gary W. Adamson, Jun 13 2009

Programs

  • Mathematica
    planePtns[n_]:=Join@@Table[Select[Tuples[IntegerPartitions/@ptn],And@@(GreaterEqual@@@Transpose[PadRight[#]])&],{ptn,IntegerPartitions[n]}];
    solidPtns[n_]:=Join@@Table[Select[Tuples[planePtns/@y],And@@(GreaterEqual@@@Transpose[Join@@@(PadRight[#,{n,n}]&/@#)])&],{y,IntegerPartitions[n]}];
    Table[Length[solidPtns[n]],{n,10}] (* Gus Wiseman, Jan 23 2019 *)

Extensions

More terms from the Mustonen and Rajesh article, May 02 2003
a(51)-a(62) found by Suresh Govindarajan and students, Dec 14 2010
a(63)-a(68) found by Suresh Govindarajan and students, Jun 01 2011
a(69)-a(72) found by Suresh Govindarajan and Srivatsan Balakrishnan, Jan 03 2013

A117433 Number of planar partitions of n with all part sizes distinct.

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 9, 11, 15, 21, 35, 41, 59, 75, 103, 149, 187, 243, 321, 413, 527, 735, 895, 1165, 1467, 1885, 2335, 2997, 3853, 4765, 5977, 7473, 9269, 11531, 14255, 17537, 22201, 26897, 33233, 40613, 50027, 60637, 74459, 89963, 109751, 134407, 162117, 195859
Offset: 0

Views

Author

Franklin T. Adams-Watters, Mar 16 2006, Apr 01 2008

Keywords

Comments

Matches A072706 for n < 10, since a unimodal composition into distinct parts can be placed uniquely as a hook. Starting with n = 10, additional partitions are possible (starting with [4,3|2,1] and [4,2|3,1]).

Examples

			From _Gus Wiseman_, Nov 15 2018: (Start)
The a(10) = 35 strict plane partitions (A = 10):
  A  64  73  82  532  91  541  631  721  4321
.
  9  54  63  72  432  8  53  71  431  7  43  52  61  421  6  42  51
  1  1   1   1   1    2  2   2   2    3  21  3   3   3    4  31  4
.
  7  6  5  43  42  5  41
  2  3  4  2   3   3  3
  1  1  1  1   1   2  2
.
  4
  3
  2
  1
(End)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) b(n, i):= `if`(n=0, [1], `if`(i<1, [], zip((x, y)
          -> x+y, b(n, i-1), `if`(i>n, [], [0, b(n-i, i-1)[]]), 0)))
        end:
    g:= proc(n) g(n):= `if`(n<2, 1, (n-1)*g(n-2) +g(n-1)) end:
    a:= proc(n) b(n, n); add(%[i]*g(i-1), i=1..nops(%)) end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Nov 18 2012
  • Mathematica
    prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
    multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
    Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],UnsameQ@@DeleteCases[Join@@prs2mat[#],0],And@@(OrderedQ[#,Greater]&/@prs2mat[#]),And@@(OrderedQ[#,Greater]&/@Transpose[prs2mat[#]])]&]],{n,5}] (* Gus Wiseman, Nov 15 2018 *)
    zip[f_, x_List, y_List, z_] := With[{m = Max[Length[x], Length[y]]}, f[PadRight[x, m, z], PadRight[y, m, z]]];
    b[n_, i_] := b[n, i] = If[n == 0, {1}, If[i < 1, {}, zip[Plus, b[n, i - 1], If[i > n, {}, Join[{0}, b[n - i, i - 1]]], 0]]];
    g[n_] := g[n] = If[n < 2, 1, (n - 1)*g[n - 2] + g[n - 1]];
    a[n_] := With[{bn = b[n, n]}, Sum[bn[[i]]*g[i - 1], {i, 1, Length[bn]}]];
    Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Dec 05 2023, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=1..floor((sqrt(8*n+1)-1)/2)} A000085(k)*A008289(n,k).

A323429 Number of rectangular plane partitions of n.

Original entry on oeis.org

1, 1, 3, 5, 10, 14, 26, 35, 58, 81, 124, 169, 257, 345, 501, 684, 968, 1304, 1830, 2452, 3387, 4541, 6188, 8257, 11193, 14865, 19968, 26481, 35341, 46674, 62007, 81611, 107860, 141602, 186292, 243800, 319610, 416984, 544601, 708690, 922472, 1197018, 1553442
Offset: 0

Views

Author

Gus Wiseman, Jan 15 2019

Keywords

Comments

Number of ways to fill a (not necessarily square) matrix with the parts of an integer partition of n so that the rows and columns are weakly decreasing.

Examples

			The a(5) = 14 matrices:
  [5] [4 1] [3 2] [3 1 1] [2 2 1] [2 1 1 1] [1 1 1 1 1]
.
  [4] [3] [2 1]
  [1] [2] [1 1]
.
  [3] [2]
  [1] [2]
  [1] [1]
.
  [2]
  [1]
  [1]
  [1]
.
  [1]
  [1]
  [1]
  [1]
  [1]
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Length[Select[Union[Sort/@Tuples[IntegerPartitions[#,{k}]&/@ptn]],And@@OrderedQ/@Transpose[#]&]],{ptn,IntegerPartitions[n]},{k,Min[ptn]}],{n,30}]

A323436 Number of plane partitions whose parts are the prime indices of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 5, 1, 4, 1, 3, 2, 2, 1, 5, 2, 2, 3, 3, 1, 4, 1, 7, 2, 2, 2, 8, 1, 2, 2, 5, 1, 4, 1, 3, 3, 2, 1, 7, 2, 4, 2, 3, 1, 7, 2, 5, 2, 2, 1, 8, 1, 2, 3, 11, 2, 4, 1, 3, 2, 4, 1, 12, 1, 2, 4, 3, 2, 4, 1, 7, 5, 2, 1, 8, 2, 2
Offset: 0

Views

Author

Gus Wiseman, Jan 15 2019

Keywords

Comments

Number of ways to fill a Young diagram with the prime indices of n such that all rows and columns are weakly decreasing.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(120) = 12 plane partitions:
  32111
.
  311   321   3111   3211
  21    11    2      1
.
  31   32   311   321
  21   11   2     1
  1    1    1     1
.
  31   32
  2    1
  1    1
  1    1
.
  3
  2
  1
  1
  1
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    ptnplane[n_]:=Union[Map[Reverse@*primeMS,Join@@Permutations/@facs[n],{2}]];
    Table[Length[Select[ptnplane[y],And[And@@GreaterEqual@@@#,And@@(GreaterEqual@@@Transpose[PadRight[#]])]&]],{y,100}]

A323438 Number of ways to fill a Young diagram with the prime indices of n such that all rows and columns are weakly increasing.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 5, 1, 3, 1, 4, 2, 2, 1, 7, 2, 2, 3, 4, 1, 4, 1, 7, 2, 2, 2, 8, 1, 2, 2, 7, 1, 4, 1, 4, 4, 2, 1, 12, 2, 3, 2, 4, 1, 5, 2, 7, 2, 2, 1, 10, 1, 2, 4, 11, 2, 4, 1, 4, 2, 4, 1, 13, 1, 2, 3, 4, 2, 4, 1, 12, 5, 2, 1, 10, 2
Offset: 1

Views

Author

Gus Wiseman, Jan 16 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(96) = 19 tableaux:
  111112
.
  111   1111   1112   11111   11112
  112   12     11     2       1
.
  11   111   111   112   1111   1112
  11   11    12    11    1      1
  12   2     1     1     2      1
.
  11   11   111   112
  11   12   1     1
  1    1    1     1
  2    1    2     1
.
  11   12
  1    1
  1    1
  1    1
  2    1
.
  1
  1
  1
  1
  1
  2
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    ptnplane[n_]:=Union[Map[primeMS,Join@@Permutations/@facs[n],{2}]];
    Table[Length[Select[ptnplane[y],And[And@@LessEqual@@@#,And@@(LessEqual@@@Transpose[PadRight[#]/.(0->Infinity)])]&]],{y,100}]

Formula

Sum_{A056239(n) = k} a(k) = A323450(n).

A321645 Number of distinct row/column permutations of plane partitions of n.

Original entry on oeis.org

1, 1, 3, 11, 32, 96, 290, 864, 2502, 7134, 20081
Offset: 0

Views

Author

Gus Wiseman, Nov 15 2018

Keywords

Examples

			The a(3) = 11 permutations of plane partitions:
  [3] [2 1] [1 2] [1 1 1]
.
  [2] [1 1] [1 1] [1] [1 0] [0 1]
  [1] [1 0] [0 1] [2] [1 1] [1 1]
.
  [1]
  [1]
  [1]
		

Crossrefs

Programs

  • Mathematica
    submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]];
    multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
    Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],OrderedQ[Sort[Map[Last,GatherBy[Sort[Reverse/@#],First],{2}],submultisetQ],submultisetQ],OrderedQ[Sort[Sort/@Map[Last,GatherBy[#,First],{2}],submultisetQ],submultisetQ]]&]],{n,6}]

A321653 Number of nonnegative integer matrices with sum of entries equal to n and no zero rows or columns, with strictly decreasing row sums and column sums.

Original entry on oeis.org

1, 1, 1, 5, 5, 14, 44, 72, 147, 381, 1405
Offset: 0

Views

Author

Gus Wiseman, Nov 15 2018

Keywords

Examples

			The a(5) = 14 matrices:
  [5] [4 1] [3 2]
.
  [4] [4 0] [3 1] [3 1] [3] [3 0] [3 0] [2 2] [2 1] [2 1] [1 2]
  [1] [0 1] [1 0] [0 1] [2] [1 1] [0 2] [1 0] [2 0] [1 1] [2 0]
		

Crossrefs

Programs

  • Mathematica
    prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
    multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
    Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],OrderedQ[Total/@prs2mat[#],Greater],OrderedQ[Total/@Transpose[prs2mat[#]],Greater]]&]],{n,6}]

A321655 Number of distinct row/column permutations of strict plane partitions of n.

Original entry on oeis.org

1, 1, 1, 5, 5, 9, 29, 33, 53, 77, 225
Offset: 0

Views

Author

Gus Wiseman, Nov 15 2018

Keywords

Examples

			The a(6) = 9 permutations of strict plane partitions:
  [6] [2 4] [4 2] [1 5] [5 1] [1 2 3] [1 3 2] [2 1 3] [2 3 1] [3 1 2] [3 2 1]
.
  [1] [5] [0 1] [1 0] [2 3] [3 2] [2] [4] [0 2] [1 3] [2 0] [3 1]
  [5] [1] [2 3] [3 2] [0 1] [1 0] [4] [2] [1 3] [0 2] [3 1] [2 0]
.
  [1] [1] [2] [2] [3] [3]
  [2] [3] [1] [3] [1] [2]
  [3] [2] [3] [1] [2] [1]
		

Crossrefs

Programs

  • Mathematica
    submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]];
    multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
    Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],UnsameQ@@Length/@Split[#],OrderedQ[Sort[Map[Last,GatherBy[Sort[Reverse/@#],First],{2}],submultisetQ],submultisetQ],OrderedQ[Sort[Sort/@Map[Last,GatherBy[#,First],{2}],submultisetQ],submultisetQ]]&]],{n,5}]

A321652 Number of nonnegative integer matrices with sum of entries equal to n and no zero rows or columns, with weakly decreasing row sums and column sums.

Original entry on oeis.org

1, 1, 5, 19, 107, 573, 4050, 29093, 249301, 2271020, 23378901, 257871081, 3132494380, 40693204728, 572089068459, 8566311524788, 137165829681775, 2327192535461323, 41865158805428687, 793982154675640340, 15863206077534914434, 332606431999260837036, 7309310804287502958322, 167896287022455809865568
Offset: 0

Views

Author

Gus Wiseman, Nov 15 2018

Keywords

Examples

			The a(3) = 19 matrices:
  [3] [2 1] [1 1 1]
.
  [2] [2 0] [1 1] [1 1 0] [1 0 1] [0 1 1]
  [1] [0 1] [1 0] [0 0 1] [0 1 0] [1 0 0]
.
  [1] [1 0] [1 0] [1 0 0] [1 0 0] [0 1] [0 1 0] [0 1 0] [0 0 1] [0 0 1]
  [1] [1 0] [0 1] [0 1 0] [0 0 1] [1 0] [1 0 0] [0 0 1] [1 0 0] [0 1 0]
  [1] [0 1] [1 0] [0 0 1] [0 1 0] [1 0] [0 0 1] [1 0 0] [0 1 0] [1 0 0]
		

Crossrefs

Programs

  • Mathematica
    prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
    multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
    Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],OrderedQ[Total/@prs2mat[#]],OrderedQ[Total/@Transpose[prs2mat[#]]]]&]],{n,6}]

Formula

Sum of coefficients in the expansions of all homogeneous symmetric functions in terms of monomial symmetric functions. In other words, if Sum_{|y| = n} h(y) = Sum_{|y| = n} c_y * m(y), then a(n) = Sum_{|y| = n} c_y.

Extensions

a(10) onwards from Ludovic Schwob, Aug 29 2023

A323430 Number of rectangular plane partitions of n with strictly decreasing rows and columns.

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 7, 9, 12, 16, 22, 27, 36, 44, 57, 72, 89, 110, 139, 170, 210, 261, 318, 390, 478, 581, 705, 860, 1036, 1252, 1511, 1816, 2178, 2618, 3127, 3743, 4471, 5330, 6347, 7564, 8984, 10674, 12669, 15016, 17780, 21050, 24868, 29371, 34655, 40836, 48080
Offset: 0

Views

Author

Gus Wiseman, Jan 15 2019

Keywords

Comments

Number of ways to fill a (not necessarily square) matrix with the parts of an integer partition of n so that the rows and columns are strictly decreasing.

Examples

			The a(8) = 12 matrices:
  [8] [7 1] [6 2] [5 3] [5 2 1] [4 3 1]
.
  [7] [6] [5] [3 2]
  [1] [2] [3] [2 1]
.
  [5] [4]
  [2] [3]
  [1] [1]
The a(10) = 22 matrices:
  [10] [9 1] [8 2] [7 3] [7 2 1] [6 4] [6 3 1] [5 4 1] [5 3 2] [4 3 2 1]
.
  [9] [8] [7] [6] [5 2] [4 2] [4 3]
  [1] [2] [3] [4] [2 1] [3 1] [2 1]
.
  [7] [6] [5] [5]
  [2] [3] [4] [3]
  [1] [1] [1] [2]
.
  [4]
  [3]
  [2]
  [1]
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Length[Select[Union[Tuples[Select[IntegerPartitions[#,{k}],UnsameQ@@#&]&/@ptn]],And@@(OrderedQ[#,Greater]&/@Transpose[#])&]],{ptn,IntegerPartitions[n]},{k,Min[ptn]}],{n,30}]
Showing 1-10 of 26 results. Next