A114790 Cumulative product of quintuple factorial A085157.
1, 1, 2, 6, 24, 120, 720, 10080, 241920, 8709120, 435456000, 28740096000, 4828336128000, 1506440871936000, 759246199455744000, 569434649591808000000, 601322989968949248000000
Offset: 0
Examples
a(10) = 1!!!!! * 2!!!!! * 3!!!!! * 4!!!!! * 5!!!!! * 6!!!!! * 7!!!!! * 8!!!!! * 9!!!!! * 10!!!!! = 1 * 2 * 3 * 4 * 5 * 6 * 14 * 24 * 36 * 50 = 435456000 = 2^11 * 3^5 * 5^3 * 7.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..84
- Eric Weisstein's World of Mathematics, Multifactorial.
Programs
-
GAP
b:= function(n) if n<1 then return 1; else return n*b(n-5); fi; end; List([0..20], n-> Product([0..n], j-> b(j)) ); # G. C. Greubel, Aug 21 2019
-
Magma
b:= func< n | n eq 0 select 1 else (n lt 6) select n else n*Self(n-5) >; [(&*[b(j): j in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 21 2019
-
Maple
b:= n-> `if`(n < 1, 1, n*b(n-5)); a:= n-> product(b(j), j = 0..n); seq(a(n), n = 0..20); # G. C. Greubel, Aug 21 2019
-
Mathematica
b[n_]:= If[n<1, 1, n*b[n-5]]; a[n_]:= Product[b[j], {j,0,n}]; Table[a[n], {n,0,20}] (* G. C. Greubel, Aug 21 2019 *)
-
PARI
b(n)=if(n<1, 1, n*b(n-5)); vector(20, n, n--; prod(j=0,n, b(j)) ) \\ G. C. Greubel, Aug 21 2019
-
Sage
@CachedFunction def b(n): if (n<1): return 1 else: return n*b(n-5) [product(b(j) for j in (0..n)) for n in (0..20)] # G. C. Greubel, Aug 21 2019
Formula
a(n) = Product_{j=0..n} A085157(j).
a(n) = n!!!!! * a(n-1) where a(0) = 1, a(1) = 1 and n >= 2.
a(n) = n*(n-5)!!!!! * a(n-1) where a(0) = 1, a(1) = 1, a(2) = 2.